Всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.


Промышленные блоки питания нередко выходят из строя, иногда даже и высококачественные и дорогостоящие образцы. В таком случае обычный человек чаще всего выбрасывает и приобретает новое, но причина поломки может быть незначительной, а для радиолюбителя такие устройства представляют немалый интерес в плане изучения и возможности возвращения работоспособности. При том, что зачастую выбрасываются устройства, стоящие немало денег.

Предлагаем пользователям рассмотреть простой ремонт стабилизированного блока питания импульсного типа, основанного на обратноходовом генераторе с обратной связью по току и напряжению, что кроме стабилизации позволяет осуществить и защиту от перегрузки. Блок питается от сети переменного тока с напряжением от 100 до 240 Вольт частоты 50/60 Герц и выдаёт постоянное напряжение 12 Вольт 2 Ампер.

Описываемая здесь неисправность довольно часто встречается в блоках питания указанного типа и имеет следующие симптомы: напряжение на выходе периодически появляется и пропадает с определённой частотой, что визуально наблюдается как вспышки и погасания светодиода индикатора выходного питания:

Если же индикаторный светодиод не установлен, то подобный симптом можно обнаружить стрелочным вольтметром, подключив его к выходу блока питания. При этом стрелка вольтметра периодически будет отклоняться до некоторого значения и возвращаться обратно (может не до конца). Такое явление наблюдается вследствие срабатывания защиты устройства, при превышении напряжения или тока в определённых точках выше допустимого.

Это может произойти как и при коротком замыкании, так и при разрыве цепи. Короткое замыкание чаще всего бывает во время пробоя конденсаторов или полупроводниковых радиоэлементов, таких как диоды или транзисторы. Обрыв же может наблюдаться как у полупроводников, так и резисторов. В любом случае в первую очередь следует визуально осмотреть печатную плату и установленные на ней радиоэлементы.

Диагностика блока питания перед ремонтом

Лучше всего проводить визуальную диагностику с помощью увеличительной лупы:


На плате был обнаружен подгоревший резистор с позиционным номером R18, при прозвонке которого выявился его обрыв и нарушение контакта:

Ремонт блока питания пошагово с фото

Сгорание резистора могло произойти при долговременном превышении на нём номинальной мощность рассеивания. Сгоревший резистор был выпаян, а его посадочное место было зачищено:


Для замены резистора нужно узнать его номинал. Для этого был разобран заведомо исправный блок питания. Указанный резистор оказался с сопротивлением 1 Ом:


Далее по цепи этого резистора был обнаружен пробитый конденсатор с позиционным номером C6, прозвонка которого показала его низкое сопротивление, а следовательно и непригодность для дальнейшего использования:


Как раз пробой этого конденсатора и мог стать причиной сгорания резистора и дальнейшей неработоспособности всего устройства в целом. Этот конденсатор также был удалён со своего места, вы можете сравнить, насколько он мал:


Пробитый конденсатор соизмерим со спичечной головкой, вот такая маленькая деталь стала причиной поломки блока питания. Рядом с ним на плате, параллельно ему, установлен второй такой же конденсатор, который уцелел. К сожалению, конденсатора для замены не оказалось и все надежды легли на оставшийся второй конденсатор. А вот на место сгоревшего резистора был подобран резистор с нужным сопротивлением в 1 Ом, но не поверхностного монтажа:


Этот резистор был установлен на посадочное место сгоревшего, места пайки были зачищены от остатков флюса, а посадочное место пробитого конденсатора было покрыто лаком для лучшей изоляции и устранения возможности воздушного пробоя этого места:


После пробного включения блок питания заработал в нормальном режиме и индикаторный светодиод перестал мигать:


Впоследствии установленный резистор всё же был заменён на резистор поверхностного монтажа и на месте удалённого конденсатора был нанесён второй слой лака:


Конечно идеальным было бы установить и второй конденсатор, но даже и без него блок питания работает нормально, без постороннего шума и мерцания светодиода:


После включения адаптера в сеть был произведён замер выходного напряжения, оно оказалось в пределах нормы, а именно 11,9 Вольт:



На этом ремонт устройства можно считать завершённым, так как ему была возвращена работоспособность и его и дальше можно применять по назначению. Стоит отметить, что блок выполнен по весьма хорошей схеме, которую, к сожалению, не представилось возможным зарисовать.

На данный момент по быстрому внешнему осмотру можно выделить хороший сетевой и выходной фильтр, продуманную схемотехнику управления силовым транзистором и хорошую стабилизацию выходного напряжения. Физическое исполнение устройства тоже на высоком уровне, монтаж жёсткий и ровный, пайка чистая, использованы прецизионные радиоэлементы. Всё это позволяет получить устройство высокого качества с точно заданными параметрами и характеристиками.

  • Читайте больше о
Из общих рекомендаций по поиску неисправностей, в первую очередь следует осуществить визуальный осмотр, обращая внимание на потемневшие участки платы или повреждённые радиоэлементы. При обнаружении сгоревшего резистора или предохранителя обязательно нужно прозвонить ближайшие детали, непосредственно соединённые с визуально повреждённой.

Особенно опасны полупроводники и конденсаторы в высоковольтных цепях, которые в случае пробоя могут повлечь за собой необратимые последствия для всего устройства при многократном его включении без выявления полного списка повреждённых компонентов. При правильной и внимательной диагностике в большинстве случаев всё заканчивается хорошо и поломку удаётся устранить заменой повреждённых деталей на такие же исправные или близкие по номиналу и параметрам.

Видеоинструкция по ремонту импульсного блока питания:

Импульсные блоки питания - самый ненадежный узел в современных радиоустройствах. Оно и понятно - огромные токи, большие напряжения. Через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.

Большинство производителей применяют простые схемы импульсного блока питания, оно и понятно. Наличие нескольких уровней защиты часто лишь усложняет ремонт и практически не влияет на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а при ремонте приходится долго разбираться, что это за детали и зачем они нужны.

Конечно, каждый импульсный блок питания имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими параметрами, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.

Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех импульсных блоков питания практически одинаков, отличие только в схемных решениях и типах применяемых деталей.

  • Как исправить ?
Мы рассмотрим методику, выработанную многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.

Итак, пошаговая инструкция ремонт импульсного блока питания:

  1. Включаем телевизор, убеждаемся, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в блоке питания. На всякий случай надо будет проверить напряжение питания строчной развертки.
  2. Выключаем телевизор, разбираем его.
  3. Проводим внешний осмотр платы телевизора, особенно участка, где размещен блок питания. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и другое. Надо будет в дальнейшем проверить их.
  4. Внимательно смотрим пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.
  5. Проверяем цепь питания: прозваниваем шнур питания, предохранитель, выключатель питания (если он есть), дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предохранитель не сгорает - просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.
  6. Проверяем остальные детали блока - диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.
  7. Смотрим, нет ли замыканий во вторичных цепях питания - для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.
Выполнив все проверки и заменив неисправные детали, можно заняться проверкой под током. Для этого вместо сетевого предохранителя подключаем лампочку 150–200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила блок питания в случае, если неисправность не устранена. Отключите размагничивающее устройство.

Включаем. На этом этапе возможны три варианта:

  1. Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку - для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150–160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим. В некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть) или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
  2. Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что импульсный блок питания не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280–300 Вольт. Если его нет - иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено, может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
  3. Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните - чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.
На 95 % неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.
  • Пошаговый
Не выбрасывайте повреждённые устройства, восстанавливайте их. Конечно иногда дешевле и проще купить новое, но ремонт - это полезное и увлекательное занятие, позволяющее развить навыки восстановления и конструирования своих собственных устройств.

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет .

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2 ), конденсаторов (С1, С2, С3, С4 ) и дросселя со встречной намоткой Tr1 . Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер . Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

В любом современном телевизоре есть импульсный блок питания.

Блок питания - это целый узел, предназначенный для обеспечения телевизора питающими напряжениями определенной мощности, необходимыми для нормального функционирования электроприбора.

Когда неисправен импульсный блок, наблюдаются всевозможные неполадки телевизионного приемника, в том числе, он совсем не работает или перестает включаться.

Возможные неисправности блока питания

Мастера ВсеРемонт24, приезжая на дом к клиенту, чаще всего сталкиваются именно с неисправностью блока питания. Это самая частая неисправность телевизоров всевозможных моделей, марок и типов.

Блок питания может быть в общей схеме телевизора или в виде отдельного модуля.

Блоки питания уникальны в каждом телевизоре, у каждого своя схема. Но на их работоспособность одинаково негативно влияют:

  • нарушение владельцем правил эксплуатации (особенно температурного режима),
  • относительно простые схемы,
  • непрофессиональный ремонт техники.

Неисправности, характерные для большинства блоков питания:

  1. Перегорание предохранителя.
  2. Блок питания не запускается, напряжение на выпрямителе есть, ключевые элементы исправны.
  3. Блок питания не запускается, так как срабатывает защита.
  4. Сгорает силовой (ключевой) транзистор.
  5. Заниженное или завышенное напряжение в первичных или вторичных цепях.

Очевидно, что разобраться в поломке и отремонтировать телевизор может только опытный телемастер. Самостоятельный ремонт крайне нежелателен, однако, возможен.

Проверка и ремонт блока питания

Если у вас есть некоторый опыт, все необходимые знания и инструменты (в частности, мультиметр и паяльник), попробуйте починить телевизионный приемник.

Алгоритм действий при проверке блока питания ТВ:

  1. Выключить телевизор (вынуть вилку из розетки).
  2. Разрядить высоковольтный конденсатор.
  3. Вынуть плату из корпуса телевизора.
  4. Осмотреть плату (визуальная диагностика).
  5. Проверить мультиметром резисторы, конденсаторы, диоды, транзисторы и прочее.
  6. Осмотреть обратную сторону платы. Проверить, нет ли трещин, пробоев между дорожками, надежность припайки деталей.

Резисторы могут:

  • потемнеть,
  • потрескаться,
  • ухудшается качество пайки выводов.

Если все это заметно визуально, имеет смысл поменять резисторы на новые с отклонением от оригинала не более плюс-минус 5%.

Если внешне ничего не заметно, следует проверить резисторы мультиметром. Резистор неисправен, если сопротивление = 0 или?.

Неисправные электролитические конденсаторы внешне вздутые. Проверяется также их емкость. Допустимые отклонения - плюс-минус 5%.

Исправный кремниевый диод имеет сопротивление в прямом направлении 3-6 кОм, а в обратном - ?.

Чтобы измерить сопротивление, нужно выпаять диод. Для проверки мультиметр устанавливают в режим измерения сопротивления с пределом в 20 кОм.

Второй вариант проверки мультиметром без выпаивания диода. В таком случае мультиметр нужно установить на режим измерения падения напряжения (должно быть до 0, 7 V). Если мультиметр показывает 0 или около нуля, диод придется все-таки выпаять и проверить снова. Если показания не меняются, наверняка произошло пробитие. Требуется замена детали.

Биполярные транзисторы проверяются в обоих направлениях (в прямом и обратном) на переходах:

  • база-коллектор,
  • база-эмиттер.

Проверка предполагает измерение падения напряжения в транзисторах. Также важно проверить чтобы не было пробоя в переходе “коллектор-эмиттер”.

Исправные транзисторы ведут себя как диоды, неисправные нужно перепроверять полностью - всю “обвязку”:

  • диоды,
  • резисторы,
  • конденсаторы.

Чтобы проверить питающие напряжения импульсного блока питания, потребуется:

  • его схема,
  • две лампы накаливания?100W.

Алгоритм действий:

  1. Воспользовавшись схемой, найти выход на каскад строчной развертки.
  2. Отключить выход.
  3. Подключить лампу накаливания.
  4. Блок питания подключить через вторую лампу.

Если лампа загорается и ярко горит, блок питания неисправен. Если же лампочка загорается и гаснет или слабо светит, входные цепи блока питания исправны.

Чтобы определить какой именно элемент пробит (отчего и горит лампочка), нужно обратиться к схеме.

Проверочное измерение напряжения производится с подключенной лампочкой на нагрузке B+. В схеме указано каким должно быть напряжение. Обычно это 110-150V. Если оно соответствующее, блок питания исправен.

Если напряжение повышено (200V), проверяют элементы первичной цепи блока питания. Если понижено - вторичные цепи.

Все неисправные детали выпаиваются, на их место припаивают новые.

Помните! Отремонтировать блок питания телевизора самостоятельно, не имея знаний и опыта, невозможно. Еще важнее то, что кустарный и любительский ремонт - прямая угроза здоровью и даже жизни людей!

Неисправности современных импульсных блоков питания

Часто причины отказов импульсных источником напряжения кроется в некачественном сетевом напряжении. Понижение и повышение напряжения сети, скачки напряжения, отключение сети, негативно сказываются на надежности электронных компонентов схем питания.

Импульсный блок питания

Особенно болезненно переносят такие скачки и отключения сети — это силовые диоды, мощные транзисторы, ШИМ контроллеры, конденсаторы. Хорошо, когда у вас преобразователь напряжения выполнен без заливки компаундом. Ремонт таких импульсных блоков питания можно сделать своими руками.

Все чаще появляются источники напряжения, залитые компаундом. Их не берут на ремонт даже в специализированных мастерских. Для них только один вариант ремонта — это замена новым. Неправильная эксплуатация этих источников, подключение более мощных нагрузок, также могут быть причиной их выхода из строя.

Не нужно эти преобразователи сразу отдавать в ремонт, причины их отказа могут быть довольно простыми, и вы с легкостью с ними справитесь. Для более сложных неисправностей нужны некоторые познания в электронике. Опыт в ремонте приходит со временем, чем вы больше будете им заниматься, тем больше обретете знаний.

Диагностика неисправностей импульсных блоков питания

Самое главное в ремонте — это найти неисправность, а устранить ее дело техники. Схемотехнику импульсных источников питания можно разделить на входную и выходную части. К входной части относится высоковольтная схема, а к выходной низковольтная.

В высоковольтной ее части платы все элементы работают под высоким напряжением, поэтому они чаще выходят из строя, чем элементы низковольтной части. Высоковольтная схема имеет сетевой фильтр, диодные мосты для выпрямления переменного напряжения сети, ключи на транзисторах и импульсный трансформатор.

Используются ещё и небольшие развязывающие трансформаторы, которые управляются ШИМ контроллерами и подают импульсы на затворы полевых транзисторов. Таким образом, происходит гальваническая развязка сетевых и вторичных напряжений. Для такой развязки часто в современных схемах используются оптроны.

Схема импульсного блока питания на транзисторах

Выходные напряжения также имеют гальваническую развязку с сетью через силовой трансформатор. В простых схемах преобразования вместо ШИМ контроллеров используют автогенераторы на транзисторах. Эти дешевые источники напряжения применяются для питания галогенных ламп, светодиодных ламп и т. д.

Особенностью таких схем является простота и минимум элементов. Однако простые и дешевые источники напряжения без нагрузки не запускается, выходное напряжение нестабильно и имеют повышенные пульсации. Хотя на освещение галогенных ламп эти параметры влияния не оказывают.

Диодный мост импульсного блока питания АТХ

Ремонт такого устройства очень прост из-за небольшого количества элементов. Наиболее часто возникают неисправности в высоковольтной части схемы, когда пробивается один или несколько диодов, вспучиваются электролитические конденсаторы, отказывают силовые транзисторы. Также выходят из строя диоды низковольтной схемы, перегорают дросселя выходного фильтра и предохранитель.

Неисправность этих элементов можно обнаружить мультиметром. Другие же неисправности импульсных блоков требуют применения осциллографа, цифрового мультиметра. В этом случае лучше отдать блок на ремонт в мастерскую. Предохранитель можно легко прозвонить мультиметром на наличие напряжения после предохранителя.

Если перегорел предохранитель нужно внимательно визуально проверить всю схему платы, дорожки, нарушение паек, потемнение элементов схемы и участков дорожек, вспучивание конденсаторов. Если диоды плохо прозваниваются мультиметром на плате, их выпаивают, и проверяет каждый в отдельности.

Проверяются все элементы платы, неисправный меняют и только тогда включается блок в сеть для проверки. При диагностике конденсаторы тоже выпаиваются и проверяются тестером. Сгоревший дроссель можно перемотать, определив количество витков, сечение провода. Найти необходимый дроссель в продаже будет нелегко, лучше его восстановить самому.

Ремонт блоков ИБП компьютеров и телевизоров

Для ремонта источника импульсного напряжения понадобится такие инструменты как паяльник с регулировкой температуры, набор отвёрток, кусачки, пинцет, монтажный нож, обычная лампа на 100 Вт. Из материала понадобится припой, флюс, спирт для удаления канифоли кисточкой с паек платы. Из приборов нужен будет мультиметр.

Так как импульсные блоки питания (ИБП) телевизоров и компьютеров имеют стандартные схемы, то и методика обнаружения неисправностей в них будет одинакова. Нарушение работы преобразователя напряжения телевизора можно определить по отсутствию подсветки светодиода.

Начинают ремонт с проверки сетевого шнура, снятия блока питания с телевизора, внимательного осмотра элементов и дорожек платы. Ищут вздутые конденсаторы, потемнение дорожек, треснутый корпус алиментов, обугливание сопротивлений, нарушение целостности паек, особенно у выводов импульсного трансформатора.

Если внешних повреждений не найдено мультиметром, проверяют предохранитель, диоды, силовые транзисторы ключей, работоспособность конденсаторов. Когда вы уверены в исправности всех элементов, а устройство не работает, нужно менять микросхему генератора импульсов.

В преобразователе телевизора основные неисправности возникают в балластных резисторах, электролитических конденсаторах низкого напряжения, диодах. Прозвонить их можно не снимая с плат (кроме диодов). После устранения неисправностей припаивают лампу 100 Вт взамен предохранителя и включают.

  1. Лампа загорается и гаснет, появляется свечение светодиода спящего режима. Светится экран телевизора. Тогда проверяют напряжение строчной развертки, если оно, выше нормы меняют конденсаторы.
  2. Лампа загорается и тухнет, а светодиод не светится, нет растра. Причина, скорее всего в генераторе импульсов. Меряют напряжение на конденсаторе, которое должно находиться в пределах 280 — 300В. Если напряжение ниже, неисправность ищут в диодах или в утечке конденсатора. При отсутствии напряжения на конденсаторе, снова проверяют все цепи высоковольтных источников питания.
  3. Лампа горит ярко при неисправности некоторых элементов. Источник напряжения проверяют заново.

С помощью лампы накаливания можно находить вероятные неисправности источника. Для ремонта источника АТХ компьютера, нужно собрать схему нагрузки как на рисунке ниже или подключить к компьютеру. Однако, если неисправность блока АТХ на устранена можно спалить материнскую плату.

Внешнее проявление отказа блока ATX может быть, когда не включается материнская плата, вентиляторы не работают или блок пытается многократно включиться. Перед поиском неисправностей устройства нужно пылесосом и кисточкой очистить его от пыли. Также проводится визуальный осмотр элементов, дорожек платы и только после этого включается нагрузка.

Если перегорает предохранитель, тогда подключают лампу накаливания 100 Вт, как при проверке источника напряжения в телевизоре. Когда лампа загорается, но не гаснет, неисправность ищут в конденсаторе, трансформаторе и диодах моста. При целом предохранителе неисправность могла возникнуть в ШИМ контроллере, тогда необходимо заменить устройство. Также многократный запуск источника указывает на неисправность стабилизатора опорного напряжения.

Техника безопасности при ремонте импульсного блока питания

Высокая сторона устройства не имеет гальванической развязки с сетью, поэтому нельзя прикасаться к элементам этой части двумя руками. При касании одной рукой вы получите ощутимый удар током, но это не смертельно. Нельзя проверять элементы, находящиеся под напряжением отверткой, пинцетом.

Высоковольтная схема устройства обозначается широкой полосой, а внутренняя часть мелкими штрихами краски. Устройство имеет высоковольтный конденсатор, который после выключения блока держит опасное напряжение до 3 минут. Поэтому после выключения нужно ждать пока конденсаторы не разрядятся или их разрядить через резистор 3 — 5 Ком. Повысить безопасность при ремонте устройства можно с помощью трансформатора безопасности.

Этот трансформатор имеет две обмотки на 220 В мощностью до 200 Вт (зависит от мощности ИБП). Такой трансформатор имеет гальваническую развязку с сетью. Первичная обмотка трансформатора включается в сеть, а вторичная с лампой подсоединяется к ИБП. В этом случае вы можете прикасаться к элементам высокой части устройства одной рукой, вы не получите удар током.