Хорошие результаты, полученные с антенной «Magnetic Loop», побудили I1ARZ попытаться построить антенну на НЧ-диапазоны. Вначале он намеревался построить петлевую антенну круглой формы (рис.1) с периметром около 10,5 м, что составляет четверть длины волны на диапазоне 7 МГц. Для этой цели была изготовлена петля из медной трубки диаметром 40 мм с тонкими стенками Однако в ходе работ выяснилось, что сгибание и разгибание трубок таких размеров - достаточно трудное дело, и форма антенны была изменена с круглой на квадратную. Некоторое снижение эффективности при этом компенсируется значительным упрощением изготовления.

Для диапазона 1,8…7,2 МГц можно использовать медную трубку диаметром 25…40 мм. Можно также использовать дюралевые трубки, однако не у всех есть возможность сварки в аргоне. После сборки вся антенная рамка покрывается несколькими слоями защитного лака.

Для правильной работы антенны очень важен настроечный конденсатор. Он должен быть хорошего качества, с большим промежутком между пластинами Использован вакуумный конденсатор емкостью 7…1000 пФ с допустимым напряжением 7 кВ Он выдерживает мощность в антенне более 100 Вт, что вполне достаточно. В том случае, когда используется диапазон 160 м, емкость должна достигать 1600 пФ.

Петля квадратной формы собирается из четырех медных трубок длиной 2,5 м и диаметром 40 мм Трубки соединяются вместе с помощью четырех водопроводных колен из меди. Трубки привариваются к коленам. Противоположные стороны рамки должны быть параллельны друг другу. В верхней трубке посередине вырезается кусок длиной в 100 мм, в вырез вставляется тефлоновый шпиндель и закрепляется с обеих сторон хомутиками и винтами. Диагональ петли составляет 3,4 м, полная длина - 10,67 м (вместе с медными пластинками шириной 50 мм, к которым прикреплены концы трубки, обеспечивающими подключение настроечного конденсатора). Для обеспечения надежного контакта пластинки после их прикрепления необходимо приварить к концам трубки.

На рис.2 приведена конструкция рамки вместе с основанием и несущей мачтой. Мачта должна быть диэлектрической, например из стеклволокон- ного удилища. Можно использовать также пластмассовую трубку. В нижней части рамка фиксируется на несущей мачте стальными хомутиками (рис.3).

Для упрочнения нижнего горизонтального куска рамки на него натягивается на длине примерно 300 мм нагретая медная трубка несколько большего диаметра. Мотор, вращающий конденсатор, укрепляется на стальной трубе на высоте над крышей около 2 м. Для придания жесткости всей конструкции ниже мотора устанавливается не менее трех растяжек.

Проще всего согласовать антенную рамку и линию питания с помощью витка коаксиального кабеля типа RG8 или RG213 Диаметр витка определяется опытным путем (примерно около 0,5 м). Подключение внутренней жилы и оболочки кабеля осуществляется в соответствии с рис.4

После того как согласующий виток настроен на наименьший КСВ, для защиты от осадков поверх места подключения натягивается гофрированная пластмассовая трубка. На конце согласующего витка нужно установить коаксиальный разъем. В месте нижнего крепления согласующего витка под крепежный дюралюминиевый хомут продевается кусок медной ленты, которая после загибания припаивается к экранирующей оболочке кабеля. Она нужна для хорошего электрического контакта с заземленной дюралевой трубкой (рис.5). В верхней части согласующий виток крепится к диэлектрической мачте резиновыми хомутиками.

Если антенна располагается на крыше, для дистанционного управления настроечного конденсатора необходим блок привода мотора постоянного тока. Для этой цели годится какой-либо магнитофонный мотор небольших размеров с небольшим редуктором. Мотор связывается с осью конденсатора изолирующим сцеплением или пластмассовой шестерней Ось конденсатора необходимо также механически присоединить к потенциометру 22 кОм группы А С помощью этого потенциометра внизу определяется положение настроечного конденсатора. Полная схема блока управления показана на рис.6.

Естественно, потенциометр необходимо расположить с той же стороны, что и мотор, соединив их двумя пластмассовыми шестернями или фрикционной передачей. Весь блок настройки размещается в герметично закрывающемся пластмассовом корпусе (или трубке). Кабель к мотору и провода от потенциометра прокладываются вдоль стекло- волоконной несущей мачты. В случае, если антенна размещается недалеко от радиостанции (например на балконе), настройку можно осуществлять непосредственно с помощью длинного валика на изолированной ручке.

Размещение настроечного конденсатора

Как уже упоминалось, неподвижная и подвижная части настроечного конденсатора присоединяются к верхней, разрезанной части рамки с помощью двух медных пластин толщиной около 0,5 мм, шириной 50 мм и длиной 300 мм каждая. Настроечный конденсатор размещается в пластмассовой трубке, которая крепится к вертикальной стекловолоконной несущей мачте (рис.7). Верхняя часть рамки соединяется тефлоновым шпинделем и крепится к несущему стекловолоконному столбу с помощью U-образных болтов.

Настройка

Настройте TRX на эквивалент нагрузки, переключите выход TRX на антенну. Антенный тюнер в этом опыте не используйте. При пониженной выходной мощности начинайте вращать конденсатор до получения минимума КСВ Если достичь низкого КСВ таким способом не удается, попытайтесь несколько деформировать согласующий виток. Если КСВ не улучшается, виток необходимо или удлинить, или укоротить. Проявив немного терпения, можно в диапазонах 1,8…7 МГц достичь КСВ 1… 1,5 Достигнуты следующие значения КСВ 1,5 на 40 м, 1,2 на 80 м и 1,1 на 160 м.

Результаты

Настройка антенны очень «острая». В диапазоне 160 м полоса пропускания антенны составляет единицы килогерц. Диаграмма направленности (ДН) - почти круговая. На рис.8 приведены ДН в горизонтальной плоскости для различных вертикальных углов излучения.

Наилучшие результаты антенна дает в диапазоне 40 м. При мощности 50 Вт автор установил немало связей с восточным побережьем США с рапортом 59. На расстояниях до 500 км днем рапорты были 59+20…25 дБ. Антенна также очень хороша на прием, поскольку достаточно «острая» настройка уменьшает шумы и сигналы работающих рядом сильных станций Антенна работает удивительно хорошо и в диапазоне 160 м. С первых попыток была установлена связь на расстоянии свыше 500 км с рапортом 59+20 дБ. С принципиальной точки зрения, в этом диапазоне эффективность антенны гораздо ниже, чем в диапазоне 40 м (см.таблицу).

Заключительные замечания

  • Антенну необходимо размещать по возможности дальше от ботьших металлических предметов, таких как ограды, металлические столбы, водосточные трубы и т.д.
  • Антенну не рекомендуется размещать внутри помещений, поскольку рамка антенны при передаче излучает сильное магнитное поле, которое вредно для здоровья.
  • При работе с мощностями выше 100 Вт рамка нагревается под действием большого тока.
  • На самом верхнем диапазоне поляризация антенны горизонтальная.

В таблице выше приведены основные электрические параметры антенны в указанных диапазонах. Аналогичную антенну можно построить и на более высокочастотные диапазоны, соответственно уменьшая размеры рамки и емкость настроечного конденсатора.

Магнитная рамочная домашняя антенна – отличная альтернатива классическим наружным. Такие конструкции позволяют передавать сигналы до 80 м. Для их изготовления чаще всего применяют коаксиальный кабель.

Классический вариант магнитной рамочной антенны

Рамочная магнитная установка – подтип малогабаритных любительских антенн, которые могут быть установлены в любой точке населенного пункта. При одинаковых условиях рамки показывают более стабильный результат, чем аналоги.

В домашней практике используют наиболее удачные модели популярных производителей. Большинство схем приведено в любительской литературе радиотехников.

Магнитная рамочная антенна из коаксиального кабеля в помещении

Сборка антенны своими руками

Материалы для изготовления

Основным элементом является коаксиальный кабель нескольких типов, длиной 12 м и 4 м. Для сооружения рабочей модели также нужны деревянные планки, конденсатор 100 пФ и коаксиальный разъем.

Сборка

Магнитная рамочная антенна сооружается без специальной подготовки и знания технической литературы. Придерживаясь порядка сборки, можно с первого раза получить рабочее устройство:

  • деревянные планки соединить крестом;
  • в дощечках пропилить канавки, глубиной соответствующие радиусу проводника;
  • на планках у основания креста просверлить отверстия для закрепления кабеля. Между ними вырезать три канавки.

Точная выдержка размеров позволяет соорудить конструкцию с высоким приемом радиочастот.

Форма магнитных рамок

Магнитная антенна из коаксиального кабеля – петля из проводника, которая подключается к конденсатору. Петля, как правило, имеет вид круга. Это обусловлено тем, что такая форма повышает эффективность конструкции. Площадь этой фигуры наибольшая по сравнению с площадью других геометрических тел, следовательно, и охват сигнала будет увеличен. Производители товаров для радиолюбителей выпускают именно круглые рамки.

Установка конструкции на балконе

Чтобы приборы работали на конкретном диапазоне волн, сооружают петли различных диаметров.

Существуют также модели в виде треугольников, квадратов и многоугольников. Применение таких конструкций обусловлено в каждом конкретном случае разными факторами: расположение устройства в комнате, компактность и др.

Круглые и квадратные рамки считаются одновитковыми, т.к. проводник не скручен. На сегодняшний день специальные программы типа KI6GD позволяют рассчитывать характеристики только одновитковых антенн. Этот вид неплохо зарекомендовал себя для работы на высокочастотных диапазонах. Главным недостатком их является крупногабаритность. Многие специалисты стремятся к работе на низких частотах, поэтому магнитная рамочная установка так популярна.

Проведенные сравнительные расчеты нескольких схем с одним, двумя и более витками, при аналогичных условиях эксплуатации показали сомнительную эффективность многовиточных конструкций. Увеличение витков максимально целесообразно исключительно для уменьшения габаритов всего устройства. К тому же для реализации данной схемы необходимо повышение расхода кабеля, следовательно, неоправданно увеличивается стоимость самоделки .

Полотно магнитной рамки

Для максимальной эффективности работы установки необходимо добиться одного условия: сопротивление потерь в полотне рамки должно быть сопоставимо с величиной сопротивления излучения всей конструкции. Для медных тонких трубок это условие легко выполняется. Для коаксиальных кабелей большого диаметра такого эффекта добиться сложнее из-за высокого сопротивления материла. На практике применяются оба типа конструкций, т.к. другие типы работают намного хуже.

Приемные рамки

Если устройство выполняет исключительно функцию приемника, то для ее работы можно использовать обычные конденсаторы с твердыми диэлектриками. Приемные рамки для уменьшения габаритов выполняют многовиточными (из тонкой проволоки).

Для передающих приборов такие конструкции не подходят, т.к. действие передатчика будет работать на нагрев установки.

Оплетка коаксиального кабеля

Оплетка магнитной рамки дает больший КПД, чем медные трубки и утолщение диаметра проводника. Для домашних экспериментов не подойдут модели в черной пластиковой оболочке, т.к. она содержит большое количество сажи. Во время работы металлические части при сильном нагреве оболочки выделяют вредные для человека химические соединения. К тому же эта особенность снижает сигнал передачи.

Коаксиальный кабель SAT-50M производства Италии

Этот тип коаксиального кабеля подходит исключительно для антенн большого размера, т.к. их сопротивление излучения проводника полностью компенсирует входное сопротивление.

Воздействие внешних факторов

Благодаря физическим свойствам коаксиальных кабелей, антенны не подвержены воздействию температуры и осадков. Негативным последствиям поддается лишь оболочка, создаваемая внешними факторами – дождем, снегом, льдом, т.к. вода имеет большие по сравнению с кабелем потери на высоких частотах. Как показывает практика, использовать такие конструкции на балконах можно в течение нескольких десятков лет. Даже при сильных морозах не наблюдается значительного ухудшения приема.

Для повышения приема магнитные приборы из коаксиального кабеля лучше размещать в помещениях или местах уменьшенного воздействия осадков: под козырьками крыш, на защищенных частях открытых балконов. Иначе устройство будет работать в первую очередь на нагрев окружающей среды, и только потом на прием и передачу сигналов.

Главным условием стабильной работы является защита конденсатора от внешних воздействий – механических, погодных и т.д. При длительном воздействии внешних факторов из-за высокочастотного напряжения возможно образование дуги, что при перегреве быстро приводит к отпайке от схемы или выходу из строя данной детали.

Рамки для высокочастотных диапазонов выполняют горизонтальными. Для низкочастотных, при высоте более 30 м, целесообразно сооружение вертикальных конструкций. Для них высота установки не влияет на качество приема.

Расположение устройства

Если данный механизм будет расположен на крыше, то необходимо предусмотреть одно условие – эта антенна должна быть выше всех остальных. На практике добиться идеального размещения зачастую невозможно. Магнитная рамочная установка достаточно неприхотлива к близкому расположению сторонних предметов и сооружений – башен вентиляции и т.д.

Правильным будет расположение на крыше сердечником вдаль так, чтобы не было поглощения сигнала большими моделями. Ввиду этого при установке на балконе снижается ее КПД. Такое расположение оправдано в тех случаях, когда обычные приемники работают некорректно.

Синхронизация рамки и кабеля

Согласование деталей достигается размещением индуктивной петли малых размеров в большую. Для симметричной связи в прибор включают специальный симметрирующий трансформатор. Для несимметричной – подключение кабеля напрямую. Заземление антенны производят в месте крепления шлейфа к основанию большого круга. Деформация шлейфа помогает добиться более точной настройки прибора.

Модификация устройства из коаксиального кабеля

Плюсы и минусы устройства

Преимущества

  • низкая себестоимость;
  • простота монтажа и обслуживания;
  • доступность исходных материалов;
  • установка в небольших комнатах;
  • долговечность устройства;
  • эффективная работа вблизи других радиоприборов;
  • отсутствие особых требований для достижения качественного приема (такие устройства работают стабильно и летом и зимой).

Недостатки

Главным недостатком является постоянная подстройка конденсаторов во время смены рабочего диапазона. Уровень помех уменьшается поворотом конструкции, что во время работы бывает крайне затруднительно из-за геометрических форм и расположения деревянных дощечек. Из-за излучений на близком расстоянии происходит передача информации с магнитных лент (во время включения магнитофона) на устройства с катушками индуктивности (телевизоры, радио и т.п.) даже при выключенных антеннах. Уровень наводок можно уменьшить за счет изменения расположения прибора.

Во время работы нельзя прикасаться к металлическим частям, из-за сильного нагрева можно получить ожоги.

Делаем сами. Видео

Как сделать широкополосную активную антенну своими руками, можно узнать из этого видео.

Магнитная рамочная антенна является наиболее целесообразным бюджетным решением для домашнего использования. Главные преимущества – работа на разных частотах, простота сборки и компактность. Хорошо выполненный прибор может получать и передавать отличный сигнал на достаточно большое расстояние.

При упоминании магнитной антенны как-то сразу приходят с голову те, что на ферритовом стержне, и это отчасти правильно. Все это разновидности одного и того же типа устройств. Магнитной называется рамочная антенна, периметр которой много меньше длины волны. Всем известные зигзаг и биквадрат (почти одно и то же) также являются родственниками рассматриваемой технологии. И совсем к ним никакого отношения не имеют антенны на магнитном основании. Это просто способ крепления не более того. Магнитное основание для антенны надежно удерживает ее на крыше любого авто. Мы же говорим сегодня об особой конструкции. Вся прелесть магнитных антенн в том, что удается обеспечить сравнительно большое усиление на сравнительно длинных волнах. При этом размер магнитной антенны достаточно мал. Давайте обсудим наше заглавие и расскажем, как может быть сделана магнитная антенна своими руками.

Магнитные антенны

Из теории известно, что в колебательном контуре из катушки индуктивности и конденсатора излучения почти что не происходит. Оно все замкнуто, и волна может качаться на резонансной частоте сколь угодно долго, затухая, ввиду наличия активного сопротивления. Да, элементы контура, индуктивность и емкость, в общем-то имеют чисто реактивный (мнимый) импеданс. Причем размер зависит от частоты по довольно незамысловатому закону. Это нечто вроде произведения круговой частоты (2 П f) на значение индуктивности или емкости, соответственно. И вот при некотором значении противоположные по знаку мнимые компоненты становятся равны. В результате импеданс становится чисто активным, в идеале он равен нулю.

В действительности биения все же затухают, потому что каждый контур на практике характеризуется добротностью. Напомним, что импеданс состоит из чисто активной (действительной) части, как например, резисторы, и мнимой. К последним относятся емкости, сопротивление которых мнимое отрицательное и индуктивности с положительным мнимым сопротивлением. Теперь представим, что в контуре обкладки конденсатора начали разводить до тех пор, пока они не оказались на противоположных концах индуктивности. Это называется вибратором (диполем) Герца, и представляет собой разновидность укороченного полуволнового и прочих видов вибраторов.

Если же взять и превратить катушку в единое кольцо, то мы получаем простейшую магнитную антенну. Это очень упрощенное толкование, но примерно так оно и есть. Причем сигнал снимается с противоположной от конденсатора стороны через усилитель на полевых транзисторах. Это обеспечивает высокую чувствительность устройства. Ну, а антенна на ферритовом стержне является разновидностью магнитной, только у нее колец множество вместо одного. Свое название этот род устройств получил за высокую чувствительность именно к магнитной составляющий волны. В частности, при работе на передачу генерируется как раз она, порождая отклик электрического поля.

Максимум направленности соответствует оси стержня. Причем оба направления равноправны. Ввиду малого периметра рамочной антенны относительно длины волны сопротивление ее достаточно низкое. Это может быть не просто 1 Ом, но даже и доли Ома. Приближенно значение можно оценить по формуле:

R = 197 (U / λ) 4 Ом.

Под U понимается периметр в метрах, в тех же единицах, что и длина волны λ. Наконец, R - сопротивление излучению, не нужно путать его с активным, которое показывает тестер. Этот параметр используется при расчете усилителя для согласования нагрузки. Следовательно, для ферритовых антенн, нужно это значение помножить еще на квадрат числа витков.

Свойства магнитных антенн

А теперь посмотрим, как сделать магнитную антенну самостоятельно. Для начала следует определить длину окружности и емкость подстроечного конденсатора. Вообще-то особенности магнитной антенны таковы, что она требует согласования в обязательном порядке, но об этом как-нибудь в другой раз. Дело в том, что отличительным признаком является невероятное число вариантов проведения этой операции, так что вырисовывается отдельная тема для разговора.

Длина периметра магнитной антенны колеблется в пределах от 0,123 до 0,246 λ. Если требуется перекрыть весь этот диапазон, то нужно правильно подобрать конденсатор. В свободном пространстве и магнитной антенны диаграмма направленности в виде тора, что и можно наблюдать, расположив виток параллельно земле. Поляризация при этом будет линейная горизонтальная. То есть это отличный вариант для приема телевещания. Недостаток в том, что угол возвышения лепестка зависит от высоты подвеса. Считается, что для расстояния до Земли λ он составит 14 градусов. И это непостоянство является отрицательным качеством. А вот для радио магнитные антенны применяются достаточно часто.

Усиление составляет 1,76 дБи, что на 0,39 меньше, чем у полуволнового вибратора. Но размер последнего для этой частоты составит десятки метров - ну, куда денешь такую громадину? Выводы делайте сами. Наша магнитная антенна не так уж и велика (периметр может составлять 2 метра для длины волны 20 метров, это меньше метра в поперечнике). Для сравнения на частоте 34 МГц, с которой хорошо знакомы дальнобойщики, благодаря рациям, длина волны составляет 8,8 метра. При этом каждый знает, что хороший полуволновый вибратор вместит не каждый Камаз. И, кстати, ранее мы приводили уже описание конструкции рамочной антенны, образуемой резиновой прокладкой заднего стекла легкового автомобиля ВАЗ. При всех ее малых габаритах работало устройство достаточно хорошо.

Кстати, такая конструкция считается более прагматичной, нежели типичные штыревые антенны для авто, где настройка ведется изменением индуктивности. Потерь получается меньше. Кроме того диаграмма направленности охватывает достаточно высокие углы места, почти до вертикали. В случае со штыревой антенной этой возможности не имеется.

Но как же правильно выбрать длину окружности? С ее увеличением растет усиление. То есть она должна удовлетворять условию, приведенному выше, и быть по возможности больше. При этом не стоит забывать, что иногда нужно перекрыть несколько частот. Кроме того с ростом периметра увеличивается полоса пропускания устройства. Нужно сказать, при ширине типичного канала в 10 кГц это не так важно. Кроме того будут автоматически отсекаться соседние несущие станций вещания. В этом смысле больше вовсе не обязательно значит лучше. Не забывайте однако, что ради усиления и затевался весь сыр-бор. Таким образом, антенна выбирается по периметру максимальной с обеспечением нужной избирательности.

Теперь главный вопрос: как определить емкость? Так, чтобы вместе с индуктивностью петли они образовали резонанс по известной формуле. Что касается определения параметров контура, то для него дана такая формула:

L = 2U (ln(U/d) - 1,07) нГн;

где U и d - длина витка и его диаметр. В чем здесь подвох? U = П d, следовательно, вместо их отношения можно было бы брать натуральный логарифм числа Пи. Ошибка ли это автора, сказать не беремся. Быть может, учитывается тот факт, что настроечный конденсатор отнимает часть длины, а также и усилитель… Емкость же находим по известной индуктивности из выражения для резонанса контура:

f = 1/ 2П √LC; откуда

С = 1/ 4П 2 L f 2 .

Статья 2. Магнитные антенны (magnetic loop):

Антенна - устройство для излучения и/или приёма электромагнитных волн путём прямого преобразования электрического тока в излучение (при передаче) или излучения в электрический ток (при приёме).

Магнитная антенна (magnetic loop) - это антенна, у которой излучение и прием электромагнитных волн осуществляется за счет магнитной составляющей, электрическая составляющая ничтожно мала и ею обычно пренебрегают.

(На форуме ОДЛР.ru в ноябре 2010 года шло обсуждение одной антенны - метёлка, для лампового приемника, с использованием балконного варианта. Я вставил свой пятачок, и получилась статья.)

И так попробую написать в стиле байка-быль.

Но у нас разговор об антеннах. Жил я тогда в военном городке Калининец, в простонародье "почтовое отделение Алабино". Каждый день по утрам, я на автобусе добирался до Голицино, на электричке доезжал до платформы Фили, далее на метро доезжал до Площади Ногина (сейчас Китай-Город). потом пешком до Покровского бульвара, в стены родной альма-матер. Вечером тот же маршрут, но наоборот. И только по пятницам было исключение из правил, была остановка в районе Фили.

Недалеко от платформы жил мой друг RA3AHQ , в миру он Болгаринов Александр (сейчас проживает в Марьино). Я брал пару "огнетушителей" и заходил в гости. У Александра был импортный трансивер фирмы Кенвуд "TS-450", по тем временам это было очень круто. Такие исключения из правил бывали практически каждую неделю, и только по пятницам. Вот однажды сидим мы, потягивая красенькое и крутим ручку верньера, слушаем разговоры радиолюбителей. Мое внимание привлекло необычное сооружение на подоконнике, я спрашиваю, вас из дас, а Саша и говорит, мол антенна это, называется магнетик луп (Magnetic loop) и показывает статью в журнале Радио № 7 за 1989 год, стр. 90, в разделе за рубежом. Одним словом, это та статья, что и привел Сергей Кашехлебов в обсуждении на форуме. Я приехал домой, у соседки выклянчил халохуп, и уже через два часа, я провел первую радиосвязь на 40 м с Питером, моя антена была смонтирована на дощечке, КПЕ прикручен винтиками к халохупу (дюраль не паяется). Это был мой первый опыт, после были и другие опыты, но об этом далее.

В 2000 году меня взяли на работу в одну фирму, которая занималась профессионально системами радиосвязи. Был один проект в Заполярье, выехали на испытания. Взяли с собой несколько типов антенн, это и традиционные треугольники, выполненные из антенного канатика, и спирально-штыревые, в основании у которых были автоматические антенные тюнеры (Icom AT-130) и одна конструкция ML (Magnetic loop), выполненная из коаксиального кабеля, оплетка ввиде гофра толщиной 30 мм. Диаметр излучателя был 4 м, закреплена антенна была на обыкновенной деревянной жерди с крестовиной, и приставлена к железному вагончику. Через определенное время выходим на связь, тестируем прохождение, составляем суточный график прохождения. И вдруг все пропало, в эфире только "белый шум", и ничего больше. Мне с базы по телефону говорят, что магнитная буря, и перерыв на неопределенное время. Я от скуки начал щелкать, переключать антенны на любительских диапазонах. Какое же было мое удивление, когда я услышал на 40 м работающих радиолюбителей. Я за микрофон и айда. У всех корреспондентов просил послушать еще две антенны, переключал на "дельту" и спирально-штыревую, а затем ML, на те антенны я не слышал ничего и меня тоже не слышали.

Позднее я уговорил коммерческого директора закупить в Германии пару антенн, хотел разных типоразмеров, но купили однотипные. В то время там было налажено производство и этим занимался Кристиан DK5CZ (царство ему небесное, замолчал ключ). Но люди и сейчас продолжают его дело. Так вернемся сюда. Немецкая конструкция была не практичная, диаметр излучателя 1,7 м, цельная, неудобная при транспортировке. В общем была изготовлена своя антенна, излучатель состоял из трех сегментов, материал АД-30 (я кусочек немецкой отвез на химический анализ), КПЕ был выполнен в виде бабочки и имел емкость от 170 до 200 пик, это позволяло перекрывать на передачу 3 любительскиз диапазона (160 м, 80 м и 40 м), при диаметре излучателя 4 м. Но это не главное, главное как работала эта антенна.

Все кто бывал у нас на коллективке наверное обращал внимание, что в непосредственной близости от радиостанции (300-500 м) полукольцом проходит три ЛЭП, одна из них 500 КВ. Так вот трескотня у нас по S-метру всегда 8-9 баллов. И вот когда я на крыше положил горизотально (на колышках высотой 1 м) ML, используя ее как приемную антенну, то.... Шумов НОЛЬ, и только полезный сигнал. Стали слышны станции, которые шли с уровнем 2-3 балла, и которые я никогда бы не услышал. Это было на 20 м диапазоне.

Второе. Наши гости подходя к школе видели на соседнем доме любительские антенны, это радиолюбитель, Александр, он любит участвовать в соревнованиях на КВ в однодиапазонном зачете, на 17-ти этажке 2 элемента Cushcraft 40_2CD, т.е. сидит себе на 40 м и всё, а у нас полный затык. На 40 м S-метр упирается в противоположную стенку, и на других бендах повыше не лучше. Так продолжалось несколко лет. И что вы думаете. Когда поставили ML по приему, так он работает в начале SSB участка, 7,045 Мгц, а мы в конце, 7,087 Мгц, мы его не ощущаем, как будто его нет.

Были еще испытания на реке Северная Двина. На теплоходе была смонтирована антенна ML (с диаметром излучателя 1,7 м - та самая - немецкая). Это было в конце мая, мы шли в низ по течению в районе г. Котлас, где-то в 3.00 на 40 м слышу работает на Латинскую Америку ER4DX, Василий. У него антенна в несколько элементов и "добрый" помощник. Я напросился в группу, и по S-метру принимал сигналы латино-американских станций на 7 баллов, и рапорт от них получал 7 баллов.

Да, кстати вот ссылка на сайт: сайт DK5CZ там все есть. И еще есть программка MagLoop4, позволяющая расчитывать магнитные рамки, которые могут выполняться ввиде круга, треугольника, квадрата, да вот ссылка, тестируйте сами: Программа для моделирования Magloop4 Если возникнут вопросы по пользованию программой, могу провести так сказать мастер-класс, или открытый урок. P.S. В качестве приемний антенны использовалась конструкция выполненная из медной трубки 10 мм (водопроводная) и конденсатор был переменный от лампового радиоприемника (настроенный один раз на средину диапазона). А в конце статьи выложу скан инструкции по ML.

Ответ одного из пользователей ОДЛР. Воодушевленный беспрецедентным академическим материалом Павла, вспомнил о спортивном снаряде (гимнастическом металлическом обруче), изготовленным знамениой ракетно-космической фирмой им.Хруничева и без надобности покоящимся за диваном... Решил поэкспериментировать на скорую руку... В течение часа ремесленных работ изготовил из нее антенну, изображенную на прилагаемых фото... Шунтирующий конденсатор (0,01 мкф) подобрал по максимуму и чистоте слабого полезного сигнала... Результат замечательный! Прием отличный! А если вынести конструкцию за пределы балкона, то лучшего и не нужно! Концепция верная! Очень доволен. Спасибо Павел! Тема стремительно продвинулась уже к обмену конкретными практическими результатами... .

Мой ответ. Александр. Все это хорошо, что вы сделали, но мне кажется это будет иметь такой же эффект, если вы поставите емкость в обыкновенный треугольник или квадрат, выполненные из обычной проволоки. Похоже конденсатор играет роль шунта или фильтр-пробки (мне так кажется). В ссылке на сайт DK5CZ приводится схематическая конструкция антенны MLoop. Она состоит из излучателя и петли возбуждения, их размеры соответственно равны 5:1, вот смотрите на рисунок. Петля выполнена из коаксиального кабеля, и она электрически не связана с излучателем (в моих конструкциях), и свой первый халохуп я делал именно так же. Но при других экспериментах вместо петли делалось гамма-согласование. В других случаях роль конденсатора выполнял воздушный зазор в месте распила излучателя, тогда периметр излучателя был равен половине длины волны, кстати это подтверждает и программа.

P.S. Мой знакомый экспериментировал с этими антеннами на диапазоне 145 Мгц, сделал двойную антенну, т.е. два излучателя, расположенные на одной траверсе (Если смотреть сверху, то конструкция похожа на два колеса на одной оси). Хашником контролировали. Результат о-о-очень интересный, я имею ввиду и диаграмму направленности. И в сравнении с многоэлементной антенной, эта конструкция не проиграла. Возвращаясь к конструкции самой антенны, это мое личное мнение, что именно система запитки антенны, будь то петля или другой вид и дает тот эффект, что в сигнале электрическая составляючая ничтожно мала и ею пренебрегают, т.е. присутствует в основном магнитная составляющая. Отсюда и название антенны - Магнитная рамка. Обратите внимание, что петля возбуждения выполнена специфически с разрезами.

Ответы пользователей. Павел, бывал у тебя не единожды, но вот антенным хозяйством не интересовался, а зря... Просвети народ, фото в студию, пожалуйста.

Поскольку в те времена не было цифрового фотоаппарата, то я пользовался "мыльницей". Кстати я забыл. Был еще один опыт использования. Я защищал диплом в ВИА как раз с применением антенн такого типа, диплом имел гриф "секретно", но думаю, что за давностью лет можно и сказать об этом, тем более есть одно фото, это фрагмент пояснительной записки при защите. Это было в мае 1990 года.

Затем подготовка к полевым соревнованиям "Радиоэкспедиция Победа". Апрель 2000 года, крыша школы (которая впоследствии стала испытательным полигоном). А это выезд под Волоколамск, к памятнику воинам-саперам (8-9 мая 2000 года) работали позывным RP3AIW. Это как раз антенна из кабеля "на кресте".

В сентябре 2000 года я уже был в Заполярье. На первом фото монтаж спирально-штыревой антенны с тюнером (9 м высотой, самодельная) и опечатка на надписи фотографии, не 2001, а 2000. В дали видна осветительная мачта, между двумя такими была смонтирована дельта (треугольник) с периметром 90 м. На втором фото - магнитная рамка, располагается горизонтально на расстоянии 80 см от железной крыши вагончика нефтяников.

Февраль 2001 года, опять испытания. Крыша школы. Антенна диаметром излучателя 4 м. Первая антенна, заказанная на производстве. В эфире я проводил эксперименты, как по расстоянию, так и в сравнении с другими типами антенн, поэтому был "популярен" в эфире и многие радиолюбители с удовольствием приезжали посмотреть и принять участие в этом процессе. Кстати на основном сайте, в гостевой книге есть отзыв одного из радиолюбителей.

Июнь 2001 года, испытания приемной антенны, я о ней писал, выполнена из медной трубки и перевернута (кондер внизу, вакуумный).

Июль 2001 года, на одном из объектов (на надписи фото тоже опечатка, не 2000, а 2001 год).

Август 2001 года. Получена антенна АМА-5, от DK5CZ. Рядом выполненная в России диаметром 1,7 м (видны болты на излучателе, в местах соединения сегментов) и "горизонтально" расположена диаметром 4 м (улучшенная, точнее усовершенствованная модель).

Июнь 2002 года. Плещеево озеро, слет радиолюбителей центральной части России. Привезли антенну диаметром излучателя 4 м, утановили возле палатки и сравнивали со всеми имеющимися у членов слета (а были и диполя и J-антенны, и треугольники).

Июль 2002 года. Река Северная Двина. Первоначально привезли антенну диаметром излучателя 4 м, но позднее заменили на антенну диаметром излучателя 1,7 м. Причина, не проходили по высоте под мостами.

В сентябре испытания с антенной диаметром излучателя 1,7 м на буксире "Лимендский комсомолец" (Лименда - это речка, впадающая в Северную Двину) в районе города Котлас.

Конденсаторы переменной емкости. Первое фото - это с антенны АМА-5, остальные нашего производства.

Были изготовлены автоматические тюнеры - точнее написана программа для однокристального процессора, команды которого управляют электромотором - поворотом конденсатора.

Появилась книжка инженера С.И. Шапошникова «Радиоприем и радиоприемники» из серии Библиотека радиолюбителя, издание Нижегородской радиолаборатории им. В.И. Ленина, 1924 год.

В данной книге есть раздел об антеннах, я его перепечатываю и выложу скан рисунка.

"Прием без антенн"

раздел "Прием без антенн"

Прием на рамки . Если на деревянную рамку, изображенную на рис. 27а, намотать некоторое количество витков изолированной проволоки, к концам которой присоединить переменный конденсатор С, то получится замкнутый колебательный контур, могущий колебаться волной, длина которой зависит от емкости С и самоиндукции L рамки. Такой контур, располагаеый в вертикальной плоскости и называемый приемной рамкой, обладает следующими свойствами:

  1. Магнитные линии электромагнитной волны, пересекая вертикальные части витков, индуктируют в рамке вынужденные колебания, на которые можно настроить собственную волну рамки конденсатором С. Если к конденсатору С присоединить детекторную цепь, то на такую рамку можно принимать работу передатчиков.
  2. Рамка обладает направляющим действием, т.е. будучи установлена, как показано на рис. 27, и настроена на приходящую волну, она лучше всего принимает сигналы в направлениях, указанных стрелками 1 и 2, т.е. волну, приходящую в плоскость рамки, и совсем не принимает волн, приходящих в направлениях 3 и 4, т.е. волн, приходящих перпендикулярно плоскости рамки. Таким образом, установив рамку в некотором направлении, при котором получается наиболее громкий звук, мы можем определить в каком направлении от нее находится передающая станция.

Рамки обладают своими достоинствами и недостатками. К первым относится их легкое устройство, малый размер, позволяющий устанавливать их дома, направляющее их действие и т.п. Главный недостаток их тот, что они воспринимают слишком мало энергии, так что детектор ими может принимать лишь на небольшие расстояния. Однако при работе с хорошим усилителем мощные передатчики принимаются посредством рамок на тысячи верст.

Приведем некоторые размеры рамок, считающиеся наивыгоднейшими. Рамка квадратная, со стороной = 70 см. Для волны 300 м кладется 4 витка; 600 м - 7 витков; 800 м - 10 витков; 1200 м - 14 витков; 1600 м - 20 витков; 2500 м - 40 витков, и т.д. Виток от витка укладываются на расстоянии одного сантиметра. Емкость конденсатора С должна быть около 1000 пф.

Рамки могут быть разнообразной величины и формы. Наиболее практичной считается рамка в виде ромба, поставленная на угол, рис. 27в.

(Ссылки на инфо из интернета)

  • Magnetic Loop Antennas - by PY1AHD (a superb loop site!) Бразилия.
  • Stealth ST-940B Mobile HF NVIS Magnetic Loop Antenna - by Stealth Telecom. Объединенные Арабские Эмираты.
  • HF LOOP AND HALF-LOOP ANTENNAS - by STAREC. Франция.
  • PA3CQR Magnetic loop antenna page - by PA3CQR. Нидерланды.
  • 80m Frame Antenna - by SM0VPO. Швеция.

Опыты с магнитными рамочными антеннами

Александр Грачёв UA6AGW

В прошлом году мне в руки попал 6-ти метровый отрезок коаксиального кабеля. Еготочное название: «Кабель коаксиальный 1″гибкий LCFS 114-50 JA, RFS (15239211)». Он имеет очень небольшой вес, вместо внешней оплётки сплошную гофрированную трубу из безкислородной меди диаметром около 25 мм, центральный проводник – медная трубка
диаметром около 9 мм (см. фото). Это и подвигло меня взяться за постройку рамочной антенны. Об этом я и хочу рассказать.

Первая антенна была построена по схеме DF9IV. При диаметре около 2 м и такой же длине петли питания, выполненной из коаксиального кабеля, она очень хорошо работала на прием, но откровенно плохо на передачу, КСВ достигал 5-6.
Рабочая полоса по приему (на уровне –6 дБ) порядка 10 кГц. При этом она отлично подавляла электрические помехи, при определенной ориентации в пространстве подавление мешающей станции легко получалось более 20 дБ.

После некоторых размышлений я пришел к выводу, что причиной высокого КСВ является использование возбуждающим элементом внутреннего проводника с его относительно небольшим диаметром. Было принято решение внутренний проводник не использовать вовсе, оставив его в виде не замкнутого витка.

Настроечный конденсатор был припаян к внешнему экрану. Приемные характеристики изменились незначительно, менее выраженным стал минимум в диаграмме, стало заметно влияние окружающих предметов. Но на передачу мало что изменилось. Далее после прочтения очередной раз статьи Григорова, было решено снять внешнюю оплетку с кабеля рамки, а медь покрыть в два слоя лаком «ХВ» (более подходящего не нашлось, впрочем, он неплохо защищает медь от
окисления). И тут, наконец, появились первые положительные результаты. КСВ снизился до 1,5, было проведено около 20 местных связей. Антенна находилась на высоте 1,5 м и могла вращаться в вертикальной плоскости.

Для сравнения использовался диполь общей длиной 42,5 м, выполненный из полевого провода с симметричной линией питания из телефонной «лапши» длиной около 20 м (этакая антенна «нищего радиолюбителя»), расположенный на крыше 5-ти этажного дома на высоте около 3-х метров. Он работал на 40 и 80 метрах, запитанный через симметричное согласующее устройство – КСВ на обоих диапазонах = 1,0. К сожалению, антенны находились в разных QTH и не было
возможности провести прямое сравнение. Но опыт эксплуатации диполя в течение года позволял судить об эффективности рамки в первом приближении.

Теперь собственно о результатах: 1) КСВ около 1,5. 2) Все корреспонденты отмечали снижение (от 1 до 2-х балов) уровня моего сигнала, по сравнению с тем, с которым они меня обычно слышат на диполь.

Начавшиеся к этому времени дожди (как говорится: «через день-каждый день»), сделали невозможными дальнейшие антенные эксперименты. Главной причиной невозможности дальнейших испытаний стали постоянные пробои настроечного
конденсатора из-за возросшей влажности воздуха.

Я испробовал, пожалуй, все доступные мне варианты, применял подключение только статорных пластин, соединяя два КПЕ последовательно, применял конденсаторы из коаксиального кабеля, высоковольтные конденсаторы
– все это заканчивалось одним – пробоем. Не попробовал я только вакуумные конденсаторы, остановила их непомерно высокая стоимость.

И вот здесь пришла идея использовать ёмкость по отношению к внешнему экрану незадействованного внутреннего проводника. Попытка рассчитать необходимую длину кабеля по известной погонной ёмкости кабеля, не привела к достоверным результатам, поэтому был использован метод постепенного приближения.

Очень жаль было резать такой замечательный кабель, но «охота – пуще неволи». Схема соединений на рисунке. Для питания использовалась петля из коаксиального кабеля длиной 2 м, по схеме DF9IV, сам питающий 50-омный кабель был длиной 15 м. Можно было предполагать, что общая ёмкость получится в соответствии с формулой последовательно включенных конденсаторов,но настроечный конденсатор является как бы продолжением собственной ёмкости кабеля.
Для настройки использован конденсатор типа «бабочка» от УКВ аппаратуры.

Пробои полностью прекратились, антенна сохранила все основные параметры классической магнитной рамочной антенны, но стала однодиапазонной.

Основные результаты следующие: 1) КСВ порядка 1,5 (зависит от длины и формы питающей петли). 2) Магнитная антенна заметно проигрывает диполю (описан выше) при сопоставимой высоте подвеса. Опыты проводились в диапазоне 80 м.

Заняться дальнейшими опытами с магнитными антеннами меня подтолкнули статья К. Ротхаммеля во втором томе его книги, посвященная магнитным рамкам, и статья Владимира Тимофеевича Полякова о рамочно-лучевой или настоящей ЕН антенне, а для понимания процессов, происходящих в антеннах и вокруг них, оказалась очень полезной статья о ближнем поле антенн.

После прочтения статьи о рамочно-лучевой антенне у меня родилось несколько многообещающих проектов, но в настоящее время испытан только один, о нём и пойдёт речь. Схема антенны изображена на рисунке, внешний вид – на фото:

Все ниже перечисленные опыты проводились в диапазоне 40м. В первых опытах антенна была на высоте 1,5 м от земли. Испробованы различные способы подключения «дипольной» (ёмкостной) части антенны к рамке, но изображенный на рисунке мне показался оптимальным. Здесь предпринята попытка магнитную рамку, излучающую преимущественно магнитную составляющую, дооснастить элементами, излучающими в основном электрическую составляющую.

Можно на эту же антенну посмотреть иначе: катушка, включенная в середину диполя, как бы удлиняет его до необходимых размеров, и вместе с тем лучи, включенные параллельно настроечному конденсатору, обладают собственной емкостью (при указанных размерах порядка 30 — 40 пФ) и входят в общую ёмкость настроечного конденсатора.

Контур, образованный внутренним проводником и конденсатором, кроме того, что повышает уровень сигнала на приеме приблизительно вдвое, по видимому, сдвигает фазу тока собственно рамки, и обеспечивает необходимое фазовое согласование (попытка отключить его приводит к увеличению КСВ до 10 и более). Возможно, мои теоретические рассуждения не совсем верны, но как показали дальнейшие опыты, антенна в данной конфигурации работает.

Ещё при самых первых опытах был замечен интересный эффект – если при неподвижной дипольной части повернуть
рамку на 90 градусов – уровень сигнала по приему падает приблизительно на 10 — 15дБ, а на 180 градусов – прием падает едва ли не до нуля. Хотя логично было бы предположить, что при повороте на 90 градусов диаграммы направленности «дипольной» части и рамки совпадут, но видимо не всё так просто.

Был изготовлен промежуточный вариант антенны, способной поворачиваться вокруг своей оси, с целью выяснить диаграмму направленности, она оказалась такой же, как и у классической рамки. Питание антенны осуществлялось той же петлей связи, что и в первых опытах. В настоящее время антенна поднята на высоту 3-х метров, лучи идут параллельно земле.

О результатах:

1) КСВ = 1.0 на частоте 7050 кГц, 1.5 на 7000кГц, 1,1 на 7100кГц.
2) Антенна не требует перестройки по диапазону. С помощью конденсаторов П-контура трансивера возможна некоторая подстройка антенны в случае необходимости.
3) Антенна весьма компактна.

На расстоянии до 1000 км рамка и диполь имеют приблизительно одинаковую эффективность, а на расстоянии более 1000 км рамка работает заметно лучше волнового диполя при одинаковой высоте подвеса, при этом рамка вчетверо
меньше диполя. Диаграмма направленности близка к круговой, минимумы мало заметны. Проведено около ста связей с 1;2;3;4;5;6;7;9 районами бывшего СССР.

Отмечен интересный эффект – оценка силы сигнала в большинстве случаев оставалась приблизительно одинаковой и при расстоянии до корреспондента 300 км и 3000км, на диполе такого не наблюдалось. Интересна реакция операторов,
когда я сообщал, на чем работаю – изумление, что на этом можно работать! Все опыты проведены на самодельном SDR трансивере с выходной мощность 100 Вт.

Материал взят из журнала CQ-QRP#27