В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

  • каналы трафика (TCH - Traffic Channel),
  • каналы служебной информации (CCH - Control Channel).
Каналы трафика делятся на два основных вида: TCH/F - Full rate канал с максимальной скоростью до 22,8 Кбит/с и TCH/H - Half rate канал с максимальной скоростью до 11,4 Кбит/с. Данные виды каналов могут быть использованы для передачи речи (TCH/FS, TCH/HS) и пользовательских данных (TCH/F9.6, TCH/F4.8, TCH/H4.8, TCH/F2.4, TCH/H2.4), например, SMS.

Каналы служебной информации делятся на:

  • Широковещательные (BCH - Broadcast Channels).
    • FCCH - Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH - Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC .
    • BCCH - Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH - Common Control Channels)
    • PCH - Paging Channel. Забегая вперед, расскажу, что Paging - это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH - Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH - Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH - Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH - Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH - Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH - Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 - 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Цитата из Википедии:

Псевдослучайная перестройка рабочей частоты (FHSS - англ. frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.


3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом - исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру - IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор - TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:
  • A5/0 - формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org , в Сирии и Южной Корее используется A5/0.
  • A5/1 - самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 - алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 - на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.
Способы атаки
Как уже говорилось, имея оборудование для сниффинга и компьютер с 2 Тб памяти и программой Kraken, можно довольно быстро (несколько секунд) находить сессионные ключи шифрования A5/1, а затем расшифровывать чей-угодно трафик. Немецкий криптолог Карстен Нол (Karsten Nohl) в 2009 году продемонстрировал способ взлома A5/1. А через несколько лет Карстен и Сильвиан Мюно продемонстрировали перехват и способ дешифровки телефонного разговора с помошью нескольких старых телефонов Motorola (проект OsmocomBB).

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей Знакомство с OsmocomBB , как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний! Добавить метки

DownLink — канал связи от базовой станции до абонента
UpLink — канал связи от абонента до базовой станции оператора.

Стандарт 4G/ LTE Частота 2500

Данный вид связи сравнительно недавно развивается и преимущественно в городах.


FDD (Frequency Division Duplex — частотное разделение каналов) — это DownLink и UpLink работают на разных полосах частот.
TDD (Time division duplex — временное разделение каналов)- это DownLink и UpLink работают на одной и той же полосе частот.

Yota: FDD DownLink 2620-2650 МГц, UpLink 2500-2530 МГц
Мегафон: FDD DownLink 2650-2660 МГц, UpLink 2530-2540 МГц
Мегафон: TDD 2575-2595 МГц — эта полоса частот выделена только в Московском регионе.
МТС: FDD DownLink 2660-2670 МГц, UpLink 2540-2550 МГц
МТС: TDD 2595-2615 МГц — эта полоса частот выделена только в Московском регионе.
Билайн: FDD DownLink 2670-2680 МГц, UpLink 2550-2560 МГц
Ростелеком: FDD DownLink 2680-2690 МГц, UpLink 2560-2570 МГц
После покупки Мегафоном компании Yota, Yota виртуально стала работать как Мегафон.

Стандарт 4G/ LTE Частота 800

В коммерческую эксплуатацию сеть запустили в начале 2014 года, преимущественно за городом, в сельской местности.

UpLink / DownLink (МГц)

Ростелеком: 791-798,5 / 832 — 839,5
МТС: 798,5-806 / 839,5 — 847,5
Мегафон: 806-813,5 / 847 — 854,5
Билайн: 813,5 — 821 / 854,5 — 862

Стандарт 3G/UMTS Частота 2000

3G/UMTS2000 — самый распространнёный стандарт сотовой связи в Европе в основном используется для передачи данных.


UpLink / DownLink (МГц)

Скайлинк: 1920-1935 / 2110 — 2125 — в конечном итоге наиболее вероятно эти частоты отойдут Ростелекому. На данный момент сеть не используется.
Мегафон: 1935-1950 / 2125 — 2140
МТС: 1950-1965 / 2140 — 2155
Билайн:1965 — 1980 / 2155 — 2170

Стандарт 2G/DCS Частота 1800

DCS1800 — тот же самый GSM, только в другом частотном диапазоне, преисущественно используется в городах. Но, например, есть регионы, где оператор ТЕЛЕ2 работает только в диапазоне 1800 МГц.

UpLink 1710-1785 МГц и Downlink 1805-1880 МГц

Показывать деление по операторам особого смысла нету, т.к. в каждом регионе распределение частот является индивидуальным.

Стандарт 2G/DCS Частота 900

GSM900 — самый распространённый на сегодняшний день стандарт связи в России и считается связью второго поколения.

Присутствует 124 канала в GSM900 МГц. Во всех регионах РФ частотные диапазоны GSM распределяются между операторами индивидуально. И существует E-GSM существует как дополнительный частотный диапазон GSM. Он смещен по частоте отновительно базового на 10 МГц..

UpLink 890-915 МГц и Downlink 935-960 МГц

UpLink 880-890 МГц и Downlink 925-935 МГц

Стандарт 3G Частота 900

Из-за нехватки каналов на 2000 частоте, под 3G были выделенны частоты в 900 Мгц. Активно используются в области.

Стандарт CDMA Частота 450

CDMA450 — в центральной части России этот стандарт использует только оператор SkyLink (Скайлинк).

UpLink 453 — 457.5 МГц и DownLink 463 — 467.5 МГц.

GSM-1800 (DCS-1800) - Global System for Mobile Сommunications - глобальная система подвижной связи. Это цифровой стандарт с диапазоном частот 1710-1880 МГц. Модификация стандарта GSM-900. К особенностям этого стандарта можно отнести следующие характеристики:
" Максимальная излучаемая мощность мобильных телефонов стандарта GSM-1800 - 1Вт (для сравнения у GSM-900 - 2Вт). Высокая защита от подслушивания и нелегального использования номера;
" Высокая емкость сети, что важно для крупных городов;
" Максимальное удаление абонента от базовой станции - 5-6 километров.
Система кодирования сигнала и использования SIM-карт аналогична стандарту GSM-900.

Подробно о GSM

Стандарт GSM тесно связан со всеми современными стандартами цифровых сетей, в первую очередь с ISDN (Integrated Services Digital Network) и IN (Intelligent Network). Основные функциональные элементы GSM входят в разрабатываемый сейчас международный стандарт глобальной системы подвижной связи UMTS (Universal Mobile Telecommunications System).

В начале 1980х годов началось быстрое развитие аналоговых систем сотовой подвижной связи Европы, особенно в странах Скандинавии, Великобритании, Франции и Германии. Каждая страна разрабатывала свою собственную систему, несовместимую с другими как в оборудовании, так и в предоставляемых услугах. Вследствие этого мобильное оборудование каждого государства использовалось лишь внутри его национальных границ и имело весьма ограниченный рынок сбыта. Таким образом возникла необходимость в создании единого общеевропейского стандарта. В 1982 году CEPT (Conference of European Posts and Telegraphs) в целях изучения и разработки общеевропейской системы сотовой подвижной связи общего пользования создала рабочую группу, получившую название GSM (Groupe Special Mobile). Разрабатываемая система должна была удовлетворять следующим критериям:
" высокое качество передачи речевой информации;
" низкая стоимость оборудования и предоставляемых услуг;
" возможность поддержки портативного оборудования пользователя;
" поддержка ряда новых услуг и оборудования;
" спектральная эффективность;
" совместимость с ISDN;
" поддержка международного роуминга, т.е. возможности использования абонентом своего мобильного телефона при перемещении в другую сеть GSM;

В 1989 году дело создания GSM перешло к ETSI (European Telecommunication Standards Institute), а в 1990 году были опубликованы спецификации первой фазы GSM. К середине 1991 года стали поддерживаться коммерческие услуги GSM, а к 1993 году функционировало уже 36 сетей GSM в 22 странах, и еще 25 стран выбрали направление GSM или поставили вопрос о его принятии. Несмотря на то, что система GSM была стандартизована в Европе, на самом деле она не является исключительно европейским стандартом. Сети GSM внедрены, либо планируются к внедрению почти в 60 странах Европы, Ближнего и Дальнего Востока, Африки, Южной Америки и в Австралии. В начале 1994 года число абонентов GSM во всем мире достигло 1,3 миллиона человек. К началу 1995 года их насчитывалось уже более 5 миллионов. Акроним GSM приобрел новое значение - Global System for Mobile communications.

Разработчики GSM выбрали неопробованную в то время цифровую систему, противопоставив ее стандартизованным аналоговым системам сотовой подвижной связи, таким как AMPS (Advanced Mobile Phone Service) в США и TACS (Total Access Communications System) в Великобритании. Они верили в то, что усовершенствование алгоритмов компрессии и цифровых процессоров позволит удовлетворить первоначальные требования к системе, и она будет развиваться по пути улучшения соотношения качество/стоимость. С самого начала разработчики GSM стремились обеспечить совместимость сетей GSM и ISDN по набору предлагаемых услуг. В соответствии с определениями ITU-T (International Telecommunication Union - Telecommunications Standardization Sector), сеть GSM может предоставлять следующие типы услуг:
" услуги по переносу информации (bearer services);
" услуги предоставления связи (teleservices);
" дополнительные услуги (supplementary services);
Самым известным направлением деятельности GSM является телефония. Так как GSM по существу является цифровой системой передачи данных, речь кодируется и передается в виде цифрового потока. Еще одним примером предоставляемого сервиса является оказание экстренной помощи, когда ближайший поставщик такого рода услуги уведомляется при помощи набора трех цифр (например, 911). Кроме того, предоставляются разнообразные услуги передачи данных. Абоненты GSM могут осуществлять обмен информацией с абонентами ISDN, обычных телефонных сетей, сетей с коммутацией пакетов, и сетей связи с коммутацией каналов, используя различные методы и протоколы доступа, например, X.25 или X.32. Возможна передача факсимильных сообщений, реализуемых при использовании соответствующего адаптера для факс-аппарата. Уникальной возможностью GSM, которой не было в старых аналоговых системах, является двунаправленная передача коротких сообщений SMS (Short Message Service), (до 160 байт), передаваемых в режиме с промежуточным хранением данных. Адресату, являющемуся абонентом SMS, может быть послано сообщение, после которого отправителю посылается подтверждение о получении. Короткие сообщения можно использовать в режиме широковещания, например, для того, чтобы извещать абонентов об изменении условий дорожного движения в регионе.

Текущие спецификации в виде дополнительных возможностей описывают услуги по переносу информации и предоставлению связи (например, перенаправление вызова в случае недоступности подвижного абонента), В последствии ожидается появление новых возможностей, таких как идентификация вызова, постановка вызова в очередь, переговоры сразу нескольких абонентов и др. Область, накрываемая сетью GSM, разбита на соты шестиугольной формы. Диаметр каждой шестиугольной ячейки может быть разным - от 400м до 50км. Функции и интерфейсы элементов сети GSM описаны в рекомендациях ETSI.

Помимо терминала MS содержит пластиковую карточку, которую называют модулем идентификации абонента SIM (Subscriber Identity Module). При вставке SIM-карты в другой терминал GSM абонент продолжает получать полный комплекс услуг. Каждый терминал имеет уникальный международный идентификатор мобильного оборудования, SIM-карта содержит международный идентификатор мобильного абонента, секретный ключ для аутентификации,и другую информацию. Эти идентификаторы не зависят друг от друга, а SIM-карта защищена от несанкционированного использования паролем либо персональным кодом. BSS тоже складывается из двух частей: из базовой приемопередающей станции BTS (Base Transceiver Station) и контроллера базовой станции BSC (Base Station Controller). Интерфейс Abis, связывающий эти части, позволяет оперировать компонентами, созданными различными производителями. Радиопокрытие BSS делится на территории - их принято называть - "соты", каждая покрывается одной BTS. BTS управляет протоколами радиоканалов с MS. На крупной густонаселенной территории может располагаться много BTS, и поэтому к ним предъявляются очень строгие требования (четкость границ, надежность, переносимость и малая стоимость). BSC управляет радиоресурсами одного или нескольких BTS, контролирует предоставление радиоканала, регулировку частоты, управление перемещаемыми из ячейки в ячейку вызовами (хендоверами) и является связующим звеном между подвижной станцией и MSC.

Как уже было отмечено, основной компонент сетевой подсистемы - центр MSC. Он управляет подвижным абонентом: регистрирует, идентифицирует, обновляет информацию о местонахождении, осуществляет хендоверы, маршрутизирует вызовы при роуминге абонентов, а также обеспечивает соединение с фиксированными сетями. Перечисленные услуги обеспечиваются различными функциональными элементами HLR, VLR и др., доступ к которым возможен через сеть системы общеканальной сигнализации SS7 (Signalling System No. 7). SS7 стандартизована на международном уровне и предназначена для обмена сигнальной информацией в цифровых сетях связи с цифровыми программно-управляемыми станциями. Система оптимизирована для работы по цифровым каналам со скоростью 64 кбит/с и позволяет управлять процессом соединения, а также передавать информацию техобслуживания и эксплуатации. Кроме того ее можно применять в качестве надежной транспортной системы для передачи других видов информации между станциями и специализированными центрами в сетях телекоммуникаций. SS7 использует метод передачи сигнальной информации по специальному каналу, общему для одного или нескольких пучков информационных каналов. Сигнальная информация должна передаваться в правильной последовательности, без потерь, при этом могут быть задействованы и наземные, и спутниковые каналы. Сеть SS7 является обязательным условием создания сети стандарта GSM. Архитектура протоколов SS7 и ее соответствие эталонной модели взаимодействия открытых систем показаны здесь. Опорный регистр местонахождения HLR (Home Location Register) и визитный регистр местонахождения VLR (Visitor Location Register), вместе с MSC, обеспечивают возможности маршрутизации и роуминга. HLR содержит все данные административного характера о каждом зарегистрированном абоненте в соответствующей данному HLR сети GSM, а также информацию о его текущем местонахождении. Информация о местонахождении абонента, как правило, предоставляется в виде сигнального адреса VLR, ассоциированного с подвижной станцией. VLR содержит выборочную административную информацию из опорного регистра, необходимую для управления вызовом и предоставления всего комплекса услуг для каждого подвижного абонента, который в этот момент находится в географической зоне, управляемой данным VLR. Другие два регистра используются для обеспечения аутентификации и безопасности.

Ширина полосы спектра для действующих в Европе сетей сотовой подвижной связи - 890-915 Мгц для восходящего звена (от подвижной станции к базовой) и 935-960 МГц для нисходящего звена (от базовой стации к подвижной). Поскольку данные диапазоны уже использовались аналоговыми системами в начале 80х годов, верхние 10 МГц каждой полосы зарезервированы для сети GSM, которая еще только разрабатывается. В конце концов GSM займет всю полосу шириной 2x25 МГц.

Поскольку радиоспектр имеет ограниченные ресурсы, необходимо оптимально распределить ширину полосы между всеми возможными пользователями. Метод, применяемый с этой целью в GSM, - это комбинация методов множественного доступа TDMA и FDMA (Time- and Frequency-Division Multiple Access). Сначала полоса частот в 25 Мгц делится на полосы в 200 Кгц. Каждой станции соответсвует своя полоса (или несколько полос). Абоненты полосы разделены во времени. Каждому абоненту соответствует один кадр. Восемь кадров объединяются во фрейм. 26 фреймов, в свою очередь, образуют мультифрейм, который повторяется циклически. Длина мультифрейма - 120 миллисекунд. На один кадр приходится 1/200 мультифрейма, т.е. около 0.6 миллисекунды. Каналы определяются числом и позицией соответствующих им цикличных кадров, и вся палитра повторяется приблизительно каждые 3 часа. Они делятся на предписанные каналы (dedicated channels), или каналы трафика, каждый из которых соответствует одной подвижной станции, и общие каналы (common channels), или каналы управления, используемые подвижными станциями в пассивном режиме.

GSM - система цифровая, поэтому требует оцифровывания аналоговой речи. Метод, используемый существующими телефонными системами и сетью ISDN для мультиплексирования аналоговых линий на высокоскоростных каналах и оптических линиях, называется импульсно-кодовой модуляцией PCM (Pulse Coded Modulation). Скорость выходного потока в PCM 64 кбит/с слишком высока для передачи по радиоканалам системы GSM. Исследовательская группа GSM изучила несколько алгоритмов кодирования речи, пока, наконец, не остановила свой выбор на схеме кодирования RPE-LTP (Regular Pulse Excitation-Long Term Prediction). Схема осуществляет перевод речевого потока, поступающего со скоростью 64 кбит/c, в поток со скоростью 13 кбит/с, и обратно, с сохранением качества передаваемого сигнала.

В отличие от фиксированных сетей, где абонентский терминал проводами подключен к центральному офису, абонент сети GSM может перемещаться в пределах национальной сети и за ее границами, т.е. осуществлять роуминг. Чтобы дозвониться до подвижного абонента, необходимо набрать номер, называемый номером подвижного абонента цифровой сети с интеграцией служб MSISDN (Mobile Subscriber ISDN). Такой номер содержит код страны и национальный код назначения, идентифицирующий оператора данного абонента. Первые несколько цифр номера идентифицируют HLR абонента в его сети подвижной связи. Входящий вызов подвижного абонента направляется для обработки шлюзом GMSC (Gateway MSC). GMSC в основном выполняет функции коммутатора, запрашивающего HLR абонента о получении необходимых данных и о маршрутизации, и поэтому содержит таблицу соединения номеров MSISDN с соответствующими им HLR. Номер роуминга подвижной станции MSRN (Mobile Station Roaming Number) полностью определяет маршрутизацию,относится к географическому плану нумерации и никак не связан с абонентами.

Новичкам непонятны игры, предпринимаемые разработчиками стандартов. Казалось бы, использует GSM частоты 850, 1900, 900, 1800 МГц, чего боле? Быстрый ответ – читайте нижеследующий раздел Инструкция телефона. Будет показана неправомерность общепринятого толкования. Проблема описана следующими положениями:

  1. Второе поколение сотовой связи 2G породило уйму стандартов. Мир знает три эпицентра, задающих ритм: Европа, Северная Америка, Япония. Россия переняла стандарты первых двух, переиначив.
  2. Родословное дерево нормативов постоянно ширится.
  3. Международные варианты стандартов призваны объединить разнородные правила отдельных стран. Часто напрямую внедрение невозможно. Правительства изменяют законодательную базу, закрепляя планы частот.

Сказанное объясняет истоки непонимания проблемы новичками. Возвращая вопросу ясность, построим упрощённую иерархию стандартов, указывая попутно используемые частоты.

Генеалогия стандартов

Следующая информация призвана разъяснить обывателю структуру существующих, вымерших стандартов. Ниже, в следующих разделах, будут описаны применявшиеся в России технологии. Жирным помечены соответствующие представители древа, украсивший русский лес.

1G

  1. Семейство AMPS: AMPS, NAMPS, TACS, ETACS.
  2. Прочие: NMT, C-450, DataTAC, Hicap, Mobitex.

2G: 1992

  1. Семейство GSM/3GPP: GSM, HSCSD, CSD.
  2. Семейство 3GPP2: cdmaOne.
  3. Семейство AMPS: D-AMPS.
  4. Прочее: iDEN, PHS, PDC, CDPD.

2G+

  1. Семейство 3GPP/GSM: GPRS, EDGE.
  2. Семейство 3GPP2: CDMA2000 1x, включая Advanced.
  3. Прочие: WiDEN, DECT.

3G: 2003

  1. Семейство 3GPP: UMTS.
  2. Семейство 3GPP2: CDMA2000 1xEV-DO R. 0

3G+

  1. Семейство 3GPP: LTE, HSPA, HSPA+.
  2. Семейство 3GPP2: CDMA2000 1xEV-DO R. A, CDMA2000 1xEV-DO R. B, CDMA2000 1xEV-DO R. C
  3. Семейство IEEE: Mobile WiMAX, Flash OFDM.

4G: 2013

  1. Семейство 3GPP: LTE-A, LTE-S Pro.
  2. Семейство IEEE: WiMAX.

5G: 2020

  1. 5G-NR.

Краткое описание

Генеалогия позволяет проследить вымершие виды. Например, современные авторы часто пользуются аббревиатурой GSM, вводя читателя в заблуждение. Технология целиком ограничена вторым поколением сотовой связи, вымерший вид. Прежние частоты с дополнениями продолжают использоваться потомками. 1 декабря 2016 года австралийский Телстра прекратил использование GSM, став первым в мире оператором, целиком обновившим оборудование. Технологией продолжают довольствоваться 80% населения планеты (согласно сведениям Ассоциации GSM). Примеру австралийских коллег 1 января 2017 года последовал американский AT&T. Последовала остановка сервиса оператором Optus, апрельским деньком 2017 Сингапур признал несоответствие 2G возрастающим потребностям населения.

Итак, термин GSM используется применительно к устаревающему оборудованию, завалившему РФ. Протоколы-потомки могут быть названы наследниками GSM. Частоты следующими поколениями сохранены. Меняются проколы, методы передачи информации. Ниже рассмотрены аспекты распределения частот, сопровождающие модернизацию оборудования. Обязательно приводятся сведения, позволяющие установить родство GSM.

Инструкция телефона

Полезную информацию касательно вопроса предоставит инструкция телефона. Соответствующий раздел перечисляет поддерживаемые частоты. Отдельные аппараты позволят настроить область приёма. Следует выбирать модель телефона, ловящую общепринятые российские каналы:

  1. 900 МГц – E-GSM. Восходящая ветка – 880..915 МГц, нисходящая – 925..960 МГц.
  2. 1800 МГц – DCS. Восходящая ветка – 1710..1785 МГц, нисходящая – 1805..1880 МГц.

Технология LTE добавляет область 2600 МГц, внедрён канал 800 МГц.

История возникновения связи РФ: частоты

В 1983 году начата разработка европейского стандарта цифровой связи. Напоминаем, первое поколение 1G использовало аналоговую передачу. Таким образом, инженеры заранее развивали стандарт, упреждая историю развития техники. Цифровая связь рождена Второй мировой войной, точнее, системой шифрованной передачи Зелёный шершень. Военные отлично понимали: грядёт эпоха цифровых технологий. Гражданская промышленность ловила движение ветра.

900 МГц

Европейская организация CEPT создала комитет GSM (Groupe Special Mobile). Европейская комиссия предложила использовать спектр 900 МГц. Разработчики засели в Париже. Пять лет спустя (1987) 13 стран ЕС подали Копенгагену меморандум необходимости создания единой сети сотовой связи. Сообщество решило запросить помощи GSM. В феврале вышла первая техническая спецификация. Политики четырёх стран (май 1987) поддержали проект боннской декларацией. Следующий короткий период (38 недель) наполнен всеобщей суетой, управляемой четырьмя назначенными персонами:

  1. Армин Зильберхорн (Германия).
  2. Филипп Дупулис (Франция).
  3. Ренцо Фаилли (Италия).
  4. Стефен Темпл (Великобритания).

В 1989 комиссия GSM оставляет попечительство CEPT, становясь частью ETSI. 1 июля 1991 года бывший премьер-министр Финляндии, Гарри Холкери, совершил первый звонок абоненту (Каарина Суонио), пользуясь услугами провайдера Радиолиния.

1800 МГц

Параллельно внедрению 2G шли работу, призванные задействовать область 1800 МГц. Первая сеть накрыла Великобританию (1993). Одновременно задвигался австралийский оператор Телеком.

1900 МГц

Частота 1900 МГц введена США (1995). Создана ассоциация GSM, мировое число абонентов достигло цифры 10 млн. человек. Годом позже цифра возросла десятикратно. Использование 1900 МГц помешало внедрению европейской версии UMTS.

800 МГц

Диапазон 800 МГц появился в 2002 году, параллельно внедрению сервиса мультимедийных сообщений.

Внимание, вопрос!

Какие частоты стали российским стандартом? Путаницы добавляет незнание авторами рунета нормативов, принимаемых официальными разработчиками. Прямой ответ рассмотрен выше (см. раздел Инструкция телефона), описываем работу упомянутых организаций (раздел UMTS).

Почему так много частот

Исследуя результаты 2010 года, Ассоциация GSM заявила: стандартом охвачены 80% абонентов планеты. Это значит, что четыре пятых сетей не могут выбрать единую частоту. Вдобавок имеется 20% чужеродных стандартов связи. Откуда берётся корень зла? Страны второй половины ХХ века развивались разрозненно. Частоты 900 МГц СССР заняли военная, гражданская воздушная навигация.

GSM: 900 МГц

Параллельно выработке Европой первых вариантов GSM НПО Астра, НИИ Радио, НИИ Министерства обороны затеяли исследования, окончившиеся натурными испытаниями. Вынесенный вердикт:

  • Возможно совместное функционирование навигации и второго поколения сотовой связи.
  1. NMT-450.

Обратите внимание: опять 2 стандарта. Каждый использует собственную сетку частот. Объявленный конкурс распределения GSM-900 выиграли НПО Астра, ОАО МГТС (ныне МТС), российские компании, канадская BCETI.

NMT-450МГц - первое поколение

Итак, Москва использовала, начиная 1992 годом, диапазон 900 МГц (см. выше), потому что другие частоты GSM ещё не были рождены. Вдобавок NMT (Нордические мобильные телефоны)… Изначально страны Скандинавского полуострова разработали два варианта:

  1. NMT-450.
  2. NMT-900 (1986).

Причина выбора российским правительством первого ответа? Вероятно, решили попробовать два диапазона. Обратите внимание, указанные стандарты описывают аналоговую связь (1G). Страны-разработчики начали прикрывать лавочку с декабря 2000 года. Последней (1 сентября 2010) сдалась Исландия (Siminn). Эксперты отмечают важное преимущество диапазона 450 МГц: дальность. Весомый плюс, оценённый удалённой Исландией. Российское правительство хотело покрыть площадь страны, задействовав минимум вышек.

NMT возлюбили рыбаки. Освобождённую сетку занял цифровой CDMA 450. За 2015 год технологии Скандинавии освоили 4G. Российский Уралвестком освободил каморку 1 сентября 2006 года, Сибирьтелеком – 10 января 2008. Дочерний (Теле 2) Скайлинк забивает диапазоном Пермскую, Архангельскую области. Срок окончания лицензии – 2021 год.

D-AMPS: ДМВ (400..890 МГц) - второе поколение

Американские сети 1G, использовавшие спецификацию AMPS, отказывались принимать GSM. Взамен разработаны две альтернативы организовать мобильные сети второго поколения:

  1. IS-54 (март 1990 года, 824-849; 869-894 МГц).
  2. IS-136. Отличается большим числом каналов.

Стандарт ныне мёртв, повсеместно заменён потомками GSM/GPRS, CDMA2000.

Зачем россиянину D-AMPS

Российский обыватель часто пользуется подержанной техникой. Оборудование D-AMPS достигло складов Теле 2, Beeline. 17 ноября 2007 последние прикрыли лавочку Центральному региону. Лицензия Новосибирской области истекла 31 декабря 2009. Последняя ласточка улетела 1 октября 2012 (Калининградская область). Киргизия использовала диапазон до 31 марта 2015.

CDMA2000 - 2G+

Некоторые варианты протокола используют:

  1. Узбекистан – 450 МГц.
  2. Украина – 450; 800 МГц.

В период декабрь 2002 – октябрь 2016 спецификации 1хRTT, EV-DO Rev. A (450 МГц) применялись Скайлинк. Ныне инфраструктура модернизирована, внедрён LTE. 13 сентября 2016 года мировые порталы облетела весть: Теле 2 прекращает использование CDMA. Американский MTS начал процесс внедрения LTE годом ранее.

GPRS – второе-третье поколение

Разработка протокола CELLPAC (1991-1993) явилась поворотной точкой развития сотовой связи. Получено 22 патента США. Потомками технологии считают LTE, UMTS. Пакетная передача данных призвана ускорить процесс обмена информацией. Проект призван усовершенствовать сети GSM (частоты перечислены выше). Сервису пользователю обязаны получением технологий:

  1. Доступ в интернет.
  2. Устаревший «нажми, чтобы говорить».
  3. Мессенджер.

Наложений двух технологий (СМС, GPRS) многократно ускоряет процесс. Спецификация поддерживает протоколы IP, PPP, X.25. Пакеты продолжают приходить даже во время разговора.

EDGE

Очередная ступень эволюции GSM задумана компаний AT&T (США). Compact-EDGE занял нишу D-AMPS. Частоты перечислены выше.

UMTS – полноценное 3G

Первое поколение, потребовавшее обновить оборудование базовых станций. Изменилась сетка частот. Предельная скорость передачи линии, использующей преимущества HSPA+, составляет 42 Мбит/с. Реально достижимые скорости значительно перекрывают 9,6 кбит/с GSM. Начиная 2006 годом, страны затеяли обновление. Используя ортогональное частотное мультиплексирование, комитет 3GPP намеревался достичь уровня 4G. Ранние пташки выпущены в 2002 году. Изначально разработчик заложил следующие частоты:

  1. .2025 МГц. Восходящая связная ветка.
  2. .2200 МГц. Нисходящая связная ветка.

Поскольку США уже использовала 1900 МГц, то выбрала отрезки 1710..1755; 2110..2155 МГц. Многие страны последовали примеру Америки. Частота 2100 МГц слишком часто занята. Отсюда приведённые вначале цифры:

  • 850/1900 МГц. Причём 2 канала выбирают, используя один диапазон. Либо 850, либо 1900.

Согласитесь, некорректно приплетать GSM, следуя дурному распространённому примеру. Второе поколение использовало полудуплексный единый канал, UMTS – задействовал сразу два (шириной 5 МГц).

Сетка частот UMTS России

Первая попытка распределить спектры состоялась 3 февраля-3 марта 1992 года. Решение адаптировала женевская конференция (1997). Именно спецификация S5.388 закрепила диапазоны:

  • 1885-2025 МГц.
  • 2110-2200 МГц.

Решение потребовало дальнейших уточнений. Комиссия определила 32 ультра-канала, 11 составили неиспользуемый резерв. Большинство прочих получили уточняющие названия, поскольку отдельные частоты совпадали. Россия отвергла европейскую практику, презрев США, приняв 2 канала (band) UMTS-FDD:

  1. №8. 900 МГц – E-GSM. Восходящая ветка – 880..915 МГц, нисходящая – 925..960 МГц.
  2. №3. 1800 МГц – DCS. Восходящая ветка – 1710..1785 МГц, нисходящая – 1805..1880 МГц.

Характеристики сотового телефона следует выбирать согласно приведённой информации. Таблица Википедии, раскрывающая частотный план планеты Земля, совершенно бесполезна. Забыли учесть российскую специфику. Европа эксплуатирует близлежащий канал №1 IMT. Вдобавок имеется сетка UMTS-TDD. Оборудование двух вариантов воздушных сетей несовместимо.

LTE – 3G+

Эволюционное продолжение связки GSM-GPRS-UMTS. Может послужить надстройкой сетей CDMA2000. Только многочастотный телефон способен обеспечить технологию LTE. Эксперты прямо указывают место ниже четвёртого поколения. Вразрез заявлениям маркетологов. Изначально организация ITU-R признала технологию соответствующей, позже позицию пересмотрели.

LTE являются зарегистрированной торговой маркой ETSI. Ключевой идеей стало применение сигнальных процессоров и внедрение инновационных способов модуляции несущей. Была признана целесообразной IP-адресация абонентов. Интерфейс потерял обратную совместимость, частотный спектр очередной раз изменился. Первая сетка (2004) запущена японской компанией NTT DoCoMo. Москву выставочный вариант технологии настиг жарким маем 2010 года.

Повторяя опыт UMTS, разработчики внедрили два варианта воздушного протокола:

  1. LTE-TDD. Временное деление каналов. Технология широко поддержана Китаем, Южной Кореей, Финляндией, Швейцарией. Наличие единственного частотного канала (1850..3800 МГц). Частично перекрывает WiMAX, возможен апгрейд.
  2. LTE-FDD. Частотное деление каналов (отдельно нисходящий, восходящий).

Частотные планы 2 технологий различны, 90% конструкции ядра совпадает. Самсунг, Квалкомм производят телефоны, способные ловить оба протокола. Занимаемые диапазоны:

  1. Северная Америка. 700, 750, 800, 850, 1900, 1700/2100, 2300, 2500, 2600 МГц.
  2. Южная Америка. 2500 МГц.
  3. Европа. 700, 800, 900, 1800, 2600 МГц.
  4. Азия. 800, 1800, 2600 МГц.
  5. Австралия, Новая Зеландия. 1800, 2300 МГц.

Россия

Российские операторы выбрали технологию LTE-FDD, используют частоты:

  1. 800 МГц.
  2. 1800 МГц.
  3. 2600 МГц.

LTE-A – 4G

Частоты остались прежними (см. LTE). Хронология запусков:

  1. 9 октября 2012 года у Yota появилось 11 базовых станций.
  2. Мегафон 25 февраля 2014 года покрыл Садовое кольцо столицы.
  3. Билайн с 5 августа 2014 года работает на частотах LTE 800, 2600 МГц.

Эта статья первая из цикла статей про сотовую связь. В данном цикле я хотел бы подробно описать принципы работы сетей сотовой связи второго, третьего и четвертого поколений. Стандарт GSM относится ко второму поколению (2G).

Сотовая связь первого поколения была аналоговой и сейчас не используются, поэтому рассматривать мы ее не будем. Второе поколение является цифровым и эта особенность позволила полностью вытеснить сети 1G. Цифровой сигнал по сравнению с аналоговым более помехоустойчивый, что является крупным преимуществом в подвижной радиосвязи. Кроме того, цифровой сигнал помимо речи позволяет передавать данные (SMS, GPRS). Стоит отметить, что данная тенденция по переходу с аналогового сигнала на цифровой является характерной не только для сотовой связи.

GSM (Global System Mobile) – глобальный стандарт цифровой мобильной связи, с разделение каналов по времени TDMA и частоте FDMA. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 1980-х годов.

GSM обеспечивает поддержку услуг:

  • Передачи данных GPRS
  • Передача речи
  • Передача коротких сообщений SMS
  • Передача факса

Кроме того, существуют дополнительные услуги:

  • Определение номера
  • Переадресация вызова
  • Ожидание и удержание вызова
  • Конференц-связь
  • Голосовая почта

Архитектура сети GSM

Рассмотрим подробнее из каких элементов строится сеть GSM и каким образом они взаимодействуют между собой.

Сеть GSM делится на две системы: SS (Switching System) – коммутационная подсистема, BSS (Base Station System) – система базовых станций. SS выполняет функции обслуживания вызовов и установления соединений, а также отвечает за реализацию всех назначенных абоненту услуг. BSS отвечает за функции, относящиеся к радиоинтерфейсу.

SS включает в себя:

  • MSC (Mobile Switching Center) – узел коммутации сети GSM
  • GMSC (Gate MSC) – коммутатор, который обрабатывает вызовы от внешних сетей
  • HLR (Home Location Register) – база данных домашних абонентов
  • VLR (Visitor Location Register) – база данных гостевых абонентов
  • AUC (Authentication Cetner) – центр аутентификации (проверки подлинности абонента)

BSS включает в себя:

  • BSC (Base Station Controller) – контроллер базовых станций
  • BTS (Base Transeiver Station) – приемо-передающая станция
  • MS (Mobile Station) – мобильная станция

Состав коммутационной подсистемы SS

MSC выполняет функции коммутации для мобильной связи. Данный центр контролирует все входящие и исходящие вызовы, поступающие из других телефонных сетей и сетей передачи данных. К данным сетям можно отнести PSTN, ISDN, сети передачи данных общего пользования, корпоративные сети, а также сети мобильной связи других операторов. Функции проверки подлинности абонентов также выполняются в MSC. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами. На MSC возлагаются функции коммутации. MSC формирует данные, необходимые для тарификации предоставленных сетью услуг связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети. MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

В системе GSM каждый оператор располагает базой данных, содержащей информацию обо всех абонентах принадлежащих своей PLMN. В сети одного оператора логически HLR – один, а физически их много, т.к. это
распределенная база данных. Информация об абоненте заносится в HLR в момент регистрации абонента (заключения абонентом контракта на обслуживание) и хранится до тех пор, пока абонент не расторгнет контракт и не будет удалён из регистра HLR.
Хранящаяся информация в HLR включает в себя:

  • Идентификаторы (номера) абонента.
  • Дополнительные услуги, закрепленные за абонентом
  • Информацию о местоположении абонента, с точностью до номера MSC/VLR
  • Аутентификационную информацию абонента (триплеты)

HLR может быть выполнен как встроенная функция в MSC/VLR, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. И в случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

База данных VLR содержит информацию о всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Таким образом, для каждого MSC на сети существует свой VLR. В VLR временно хранится информация о услугах, и благодаря этому связанный с ним MSC может обслуживать всех абонентов, находящихся в зоне обслуживания данного MSC. В HLR и VLR хранится очень похожая информация об абоненте, но есть некоторые отличия, которые будут рассмотрены в следующих главах. Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC – центр проверки подлинности абонента, состоит из нескольких блоков и формирует ключи аутентификации и шифрации (осуществляется генерация паролей). С его помощью MSC проверяет подлинность абонента, и при установлении соединения на радиоинтерфейсе будет включена шифрация передаваемой информации.

Состав подсистемы базовых станций BSS

BSC управляет всеми функциями, относящимися к работе радиоканалов в сети GSМ. Это коммутатор, который обеспечивает такие функции, как хэндовер MS, назначение радиоканалов и сбор данных о конфигурации сот. Каждый MSC может управлять несколькими BSC.

BTS управляет радиоинтерфейсом с MS. BTS включает в себя такое радиооборудование, как приемо-передатчики и антенны, которые необходимы для обслуживание каждой соты в сети. Контроллер BSC управляет несколькими BTS.

Географическое построение сетей GSM

Каждая телефонная сеть нуждается в определенной структуре для маршрутизации вызовов к требуемой станции и далее к абоненту. В сети мобильной связи эта структура особенно важна, так как абоненты перемещаются по сети, то есть меняют свое местоположение и это местоположение должно постоянно отслеживаться.

Не смотря на то, что сота является базовой единицей системы связи GSM, дать четкое определение очень сложно. Привязать этот термин к антенне или к базовой станции невозможно, т.к. существуют различные соты. Тем не менее, сота – это некоторая географическая область, которая обслуживается одной или несколькими базовыми станциями и в которой действует одна группа контрольных логических каналов GSM (сами каналы будут рассмотрены в следующих главах). Каждой соте назначается свой уникальной номер, называемый Глобальным идентификатором соты (CGI). В сети, охватывающей, например, целую страну, число сот может быть очень большим.

Зона местоположения (LA) определяется как группа сот, в которой будет производиться вызов мобильной станции. Местоположение абонента в пределах сети связано с той LA, в которой в данный момент находится абонент. Идентификатор данной зоны (LAI) хранится в VLR. Когда MS пересекает границу между двумя сотами, принадлежащими различным LA, она передает в сеть информацию о новой LA. Это происходит только в том случае, если MS находится в режиме Idle. Информация о новом местоположении не передается в течение установленного соединения, этот процесс будет происходить после окончания соединения. Если MS пересекает границу между сотами в пределах одной LA, она не сообщает сети о своем новом местоположении. При поступлении входящего вызова к MS пейджинговое сообщение распространяется в пределах всех сот, принадлежащих одной LA.

Зона обслуживания MSC состоит из некоторого числа LA и отображает географическую часть сети, находящуюся под управлением одного MSC. Для того, чтобы направить вызов к MS информация о зоне обслуживания MSC также необходима, поэтому зона обслуживания также отслеживается и информация о ней записывается в базе данных (HLR).

Зона обслуживания PLMN представляет собой совокупность сот, обслуживаемых одним оператором и определяется как зона, в которой оператор обеспечивает абоненту радиопокрытие и доступ к своей сети. В любой стране может быть несколько PLMN, по одной на каждого оператора. Определение роуминг употребляется в случае перемещения MS из одной области обслуживания PLMN в другую. Так называемый внутри сетевой роуминг представляет собой смену MSC/VLR.

Зона обслуживания GSM представляет собой всю географическую область, в которой абонент может получить доступ к сети GSM. Зона обслуживания GSM увеличивается по мере того, как новые операторы подписывают контракты, предусматривающие совместную работу по обслуживанию абонентов. В настоящее время зона обслуживания GSM охватывает с некоторыми промежутками многие страны от Ирландии до Австралии и от Южной Африки до Америки.

Международный роуминг – это термин, который применяется в том случае, когда MS перемещается от одной национальной PLMN в другую национальную PLMN.

Частотный план GSM

GSM включает в себя несколько диапазонов частот, наиболее распространены: 900, 1800, 1900 МГц. Изначально под стандарт GSM был выделен диапазон 900 МГц. В настоящее время данный диапазон остаётся всемирным. В некоторых странах используются расширенные диапазоны частот, обеспечивающие большую ёмкость сети. Расширенные диапазоны частот называются E-GSM и R-GSM, в то время как обычный диапазон носит название P-GSM (primary).

  • P-GSM900 890-915/935-960 MHz
  • E-GSM900 880-915/925-960 MHz
  • R-GSM900 890-925/935-970 MHz
  • R-GSM1800 1710-1785/1805-1880 MHz

В 1990 г. для увеличения конкуренции между операторами, в Великобритании начали развивать новую версию GSM, которая адаптирована к диапазону частот 1800. Сразу после утверждения данного диапазона несколько стран сделали заявку на использование данного диапазона частот. Введение данного диапазона увеличило рост количества операторов, приводя к увеличению конкуренции и, соответственно, улучшению качества
обслуживания. Применение данного диапазона позволяет увеличивать емкость сети за счёт увеличения полосы пропускания и, соответственно, увеличение количества несущих. Диапазон частот 1800 использует следующие диапазоны частот: GSM 1710-1805/1785-1880 MHz. До 1997 года стандарт 1800 носил название Digital Cellular System (DCS) 1800 MHz, в настоящее время носит название GSM 1800.

В 1995 году в США была специфицирована концепция PCS (Personal Cellular System). Основной идеей этой концепции является возможность предоставления персональной связи, то есть связи между двумя абонентами, а не между двумя мобильными станциями. PCS не требует, чтобы эти услуги были реализованы на основе сотовой технологии, но в настоящее время эта технология признана наиболее эффективной для данной концепции. Частоты, доступные для реализации PCS, находятся в области 1900 МГц. Поскольку в Северной Америке стандарт GSM 900 не может быть использован из-за того, что эта полоса частот занята другим стандартом, стандарт GSM 1900 является возможностью заполнения этого пробела. Основным различием между американским стандартом GSM 1900 и GSM 900 является то, что GSM 1900 поддерживает сигнализацию ANSI.

Традиционно полоса 800 МГц была занята распространенным в США стандартом TDMA (AMPS и D-AMPS). Как и в случае со стандартом GSM 1800 этот стандарт дает возможность получения дополнительных лицензий, то есть расширяет область работы стандарта на национальных сетях предоставляя операторам дополнительную емкость.


Подписывайтесь на нашу