При решении задач на смешанное соединение проводников надо попытаться преобразовать цепь и заменить параллельно и последовательно соединенные проводники эквивалентными им проводниками.

В приведенном примере следует иметь в виду, что первый и второй проводники нельзя считать соединенными последовательно, так как в точке их соединения имеется ответвление. По той же причине нельзя считать соединенными последовательно проводники 1–3 и 4–5.

Проводник 1 и проводник 2,3 соединены последовательно. Их так же можно заменить одним эквивалентным проводником, сопротивление которого равно сумме сопротивлений проводников 1 и 2,3. Найдя это сопротивление, вновь рисуем преобразованную цепь. В этой цепи проводник 1,2,3 соединен параллельно с проводником 5. Сопротивление параллельно соединенных проводников можно так же рассчитать по известной формуле и заменить одним проводником с эквивалентным сопротивлением 1,2,3,5.

Например, если бы мы имели дело с четырьмя проводниками, соединенными так, как показано на схеме, задача решалась бы элементарно. Пары проводников 1,2 и 3,4 соединены последовательно. Их можно заменить эквивалентными им проводниками. Эти эквивалентные проводники соединены параллельно, и их также легко заменить одним общим проводником. (Если бы сопротивления проводников были равны 10 Ом каждое, тогда общее сопротивление цепи так же получились равным 10 Ом).

Пусть в точку А втекает ток силой I 0 . В этой точке ток разветвляется. Часть его течет через верхнюю часть цепи, часть через нижнюю. Может получиться так, что ток, который течет по верхнему и нижнему участкам, одинаков.

В задачах на расчет электрических цепей полезно проводить аналогию между электрическим током и током воды в трубах. Попробуем мысленно провести такую замену в рассматриваемой задаче.

Пусть для простоты трубы 1, 2, 3, 4 одинаковы по сечению и длине. По двум параллельным ветвям текут одинаковые токи. Дальше трубы сходятся в одну трубу. Очевидно, что ток втекающий равен току вытекающему. Если поставить перешеек, соединяющий два трубопровода, то в этот перешеек, в силу равенства напоров с двух сторон, вода не потечет ни в одну, ни в другую сторону, каким бы ни был перешеек. Этот перешеек вполне можно из рассмотрения процесса исключить.

Так же и в электрических цепях. Если окажется, что потенциалы точек С и Д равны между собой, то тока через проводник 5 не будет.

Таким образом, когда мы доходим до принципиально не преобразуемой электрической цепи, надо в этой цепи попытаться найти точки с равными потенциалами. Если удастся это сделать, то всякий проводник, соединяющий эти точки, из цепи можно исключить. Так же точки с равными потенциалами можно соединить между собой любым проводником, в том числе и с нулевым сопротивлением.

В данном случае, потенциалы точек С и Д будут равными при равенстве сопротивлений проводников 1–4.

Равными могут быть сопротивления проводников 1 и 3, 2 и 4. Все равно, силы токов в верхней и нижней ветвях будут равны между собой. Падения напряжений на проводниках 1 и 3, 2 и 4 также будут равны между собой, поэтому ток в цепи резистора 5 будет отсутствовать. В силу этого, резистор 5, при любом его сопротивлении, можно выбросить из рассмотрения.

Однако может получиться, что потенциалы точек С и Д друг другу не равны. Тогда протекание токов I 1 и I 3 следует рассматривать дальше. Допустим, что ток I 1 > I 3 . I 1 доходит до точки С, и разветвляется дальше. Часть тока идет через резистор 2, а часть через резистор 5. Токи I 4 и I 3 сходятся в точке Д. Эти токи идут дальше через резистор 4, поэтому ток I 5 равен сумме токов I 4 и I 3 . Ток I 5 сольется с током I 2 и образует ток, равный исходному току I 0 .

Таким образом заключаем следующее.

I 0 = I 1 + I 2 ,
I 0 = I 2 + I 5 ,
I 1 = I 2 + I 4 ,
I 5 = I 3 + I 4 .

Далее в цепи необходимо выделить замкнутые контуры. Для этого берется произвольная точка и начинается движение по цепи так, чтобы вернуться в эту точку. При обходе надо придерживаться одного направления. Число контуров должно быть таким, чтобы можно было обойти все элементы цепи.

Если в контуре отсутствуют источники тока, то сумма падений напряжений равна нулю. Обойдем элементы 1–5–3, двигаясь по часовой стрелке.

Полученную систему уравнений можно решить относительно неизвестных величин.

1. Чему равно время прохождения тока силой 5 А по проводнику, если при напряжении на его концах 120 В в проводнике выделяется количество теплоты, равное 540 кДж? (Ответ дайте в секундах.)

2. В электронагревателе с неизменным сопротивлением спирали, через который течёт постоянный ток, за время t выделяется количество теплоты Q . Если силу тока и время t увеличить вдвое, то во сколько раз увеличится количество теплоты, выделившееся в нагревателе?

3. Резистор 1 с электрическим сопротивлением 3 Ом и резистор 2 с электрическим сопротивлением 6 Ом включены последовательно в цепь постоянного тока. Чему равно отношение количества теплоты, выделяющегося на резисторе 1, к количеству теплоты, выделяющемуся на резисторе 2 за одинаковое время?

4. На рисунке показан график зависимости силы тока в лампе накаливания от напряжения на её клеммах. Какова мощность тока в лампе при напряжении 30 В? (Ответ дайте в ваттах.)

5.

Ученик собрал электрическую цепь, изображенную на рисунке. Какая энергия выделится во внешней части цепи при протекании тока в течение 10 мин? (Ответ выразите в кДж. Необходимые данные указаны на схеме. Амперметр считать идеальным.)

6. К источнику тока с ЭДС 2 В подключён конденсатор ёмкостью 1 мкФ. Какую работу совершил источник при зарядке конденсатора? (Ответ дайте в мкДж.)

7. К источнику тока с ЭДС 2 В подключен конденсатор емкостью 1 мкФ. Какое тепло выделится в цепи в процессе зарядки конденсатора? (Ответ дайте в мкДж.) Эффектами излучения пренебречь.

8. К идеальному источнику тока с ЭДС 3 В подключили конденсатор ёмкостью 1 мкФ один раз через резистор а второй раз - через резистор Во сколько раз во втором случае тепло, выделившееся на резисторе, больше по сравнению с первым? Излучением пренебречь.

9. К источнику тока с ЭДС 4 В и внутренним сопротивлением подсоединили нагрузочное сопротивление. Чему оно должно быть равно, чтобы КПД источника был равен 50 %? (Ответ дайте в омах.)

10. В электрической цепи, схема которой изображена на рисунке, измерительные приборы идеальные, вольтметр показывает значение напряжения 8 В, а амперметр - значение силы тока 2 А. Какое количество теплоты выделится в резисторе за 1 секунду? (Ответ дайте в джоулях.)

11. Комната освещается четырьмя одинаковыми параллельно включёнными лампочками. Расход электроэнергии за час равен Q . Каким должно быть число параллельно включённых лампочек, чтобы расход электроэнергии в час был равен 2Q ?

12. Электрический чайник мощностью 2,2 кВт рассчитан на включение в электрическую сеть напряжением 220 В. Определите силу тока в нагревательном элементе чайника при его работе в такой сети. Ответ приведите в амперах.

13. На корпусе электропечи-ростера имеется надпись: «220 В, 660 Вт». Найдите силу тока, потребляемого ростером. (Ответ дайте в амперах.)

14. На цоколе электрической лампы накаливания написано: «220 В, 60 Вт». Две такие лампы соединяют параллельно и подключают к напряжению 127 В. Какая мощность будет выделяться в двух этих лампах при таком способе подключения? (Ответ дать в ваттах, округлив до целых.) При решении задачи считайте, что сопротивление лампы не зависит от приложенного к ней напряжения.

15. На цоколе электрической лампы накаливания написано: «220 В, 100 Вт». Три такие лампы соединяют параллельно и подключают к напряжению 127 В. Какая мощность будет выделяться в трёх этих лампах при таком способе подключения? (Ответ дать в ваттах, округлив до целых.) При решении задачи считайте, что сопротивление лампы не зависит от приложенного к ней напряжения.

16. В школьной лаборатории есть два проводника круглого сечения. Удельное сопротивление первого проводника в 2 раза больше удельного сопротивления второго проводника. Длина первого проводника в 2 раза больше длины второго. При подключении этих проводников к одинаковым источникам постоянного напряжения за одинаковые интервалы времени во втором проводнике выделяется количество теплоты в 4 раза большее, чем в первом. Каково отношение радиуса второго проводника к радиусу первого проводника?

17. В школьной лаборатории есть два проводника круглого сечения. Удельное сопротивление первого проводника в 2 раза больше удельного сопротивления второго проводника. Длина первого проводника в 2 раза больше длины второго. При подключении этих проводников к одинаковым источникам постоянного напряжения за одинаковые интервалы времени во втором проводнике выделяется количество теплоты в 4 раза меньшее, чем в первом. Чему равно отношение радиуса первого проводника к радиусу второго проводника?

18. R 1 , включённом в электрическую цепь, схема которой изображена на рисунке? (Ответ дать в ваттах.) R 1 = 3 Ом, R 2 = 2 Ом, R

19. Какая мощность выделяется в резисторе R 2 , включённом в электрическую цепь, схема которой изображена на рисунке? (Ответ дать в ваттах.) R 1 = 3 Ом, R 2 = 2 Ом, R 3 = 1 Ом, ЭДС источника 5 В, внутреннее сопротивление источника пренебрежимо мало.

20. R = 16 Ом, а напряжение между точками A и B равно 8 В? Ответ приведите в ваттах.

21. Какая мощность выделяется в участке цепи, схема которого изображена на рисунке, если R = 27 Ом, а напряжение между точками A и B равно 9 В? Ответ приведите в ваттах.

22. I = 6 А. Чему равна сила тока, которую показывает амперметр? (Ответ дайте в амперах.) Сопротивлением амперметра пренебречь.

23. Резистор с сопротивлением подключают к источнику тока с ЭДС и внутренним сопротивлением Если подключить этот резистор к источнику тока с ЭДС и внутренним сопротивлением то во сколько раз увеличится мощность, выделяющаяся в этом резисторе?

24.

I U на лампе. Такую лампу подключили к источнику постоянного напряжения 2 В. Какую работу совершит электрический ток в нити накаливания лампы за 5 секунд? Ответ выразите в Дж.

25.

На графике показана экспериментально полученная зависимость силы тока I , текущего через лампу накаливания, от напряжения U на лампе. Такую лампу подключили к источнику постоянного напряжения 4 В. Какую работу совершит электрический ток в нити накаливания лампы за 10 секунд? Ответ выразите в Дж.

26. Через участок цепи (см. рисунок) течёт постоянный ток I = 4 А. Какую силу тока покажет включённый в эту цепь идеальный амперметр, если сопротивление каждого резистора r = 1 Ом? Ответ выразите в амперах.

27. Точечный положительный заряд величиной 2 мкКл помещён между двумя протяжёнными пластинами, равномерно заряженными разноимёнными зарядами. Модуль напряжённости электрического поля, создаваемого положительно заряженной пластиной, равен 10 3 кВ/м, а поля, создаваемого отрицательно заряженной пластиной, в 2 раза больше. Определите модуль электрической силы, которая будет действовать на указанный точечный заряд.

28. Точечный положительный заряд величиной 2 мкКл помещён между двумя протяжёнными пластинами, равномерно заряженными положительными зарядами. Модуль напряжённости электрического поля, создаваемого одной пластиной, равен 10 3 кВ/м, а поля, создаваемого второй пластиной, в 2 раза больше. Определите модуль электрической силы, которая будет действовать на указанный точечный заряд. Ответ дайте в ньютонах.

29.

С , резистора сопротивлением R и ключа К. Конденсатор заряжен до напряжения U = 20 В. Заряд на обкладках конденсатора равен q = 10 –6 Кл. Какое количество теплоты выделится в резисторе после замыкания ключа К? Ответ выразите в мкДж.

30.

На рисунке приведена схема электрической цепи, состоящей из конденсатора ёмкостью С , резистора сопротивлением R и ключа К. Емкость конденсатора C = 1 мкФ, и он заряжен до напряжения U = 10 В. Какое количество теплоты выделится в резисторе после замыкания ключа К? Ответ выразите в мкДж.

31. Плавкий предохранитель счётчика электроэнергии в квартирной сети напряжением 220 В снабжён надписью: «6 А». Какова максимальная суммарная мощность электрических приборов, которые можно одновременно включить в сеть, чтобы предохранитель не расплавился? (Ответ дайте в ваттах)

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ:

I- сила тока в цепи; Е- электродвижущая сила источника тока, включённого в цепь; R- сопротивление внешней цепи; r- внутреннее сопротивление источника тока.

МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ

. (2)

Из формулы (2) видно, что при коротком замыкании цепи (R ®0) и при R ® эта мощность равна нулю. При всех других конечных значениях R мощность Р 1 > 0. Следовательно, функция Р 1 имеет максимум. Значение R 0 , соответствующее максимальной мощности, можно получить, дифференцируя Р 1 по R и приравнивая первую производную к нулю:

. (3)

Из формулы (3), с учётом того, что R и r всегда положительны, а Е? 0, после несложных алгебраических преобразований получим:

Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.

При этом сила тока в цепи (5)

равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного

Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна

Следовательно, полная мощность, выделяемая во всей цепи, определится формулой

= I 2 (R+r ) = IE (8)

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ источника тока равен . (9)

Из формулы (8) следует, что

т.е. Р 1 изменяется с изменением силы тока в цепи по параболическому закону и принимает нулевые значения при I = 0 и при . Первое значение соответствует разомкнутой цепи (R>> r), второе – короткому замыканию (R<< r). Зависимость к.п.д. от силы тока в цепи с учётом формул (8), (9), (10) примет вид

Таким образом, к.п.д. достигает наибольшего значения h =1 в случае разомкнутой цепи (I = 0), а затем уменьшается по линейному закону, обращаясь в нуль при коротком замыкании.

Зависимость мощностей Р 1 , Р полн = EI и к.п.д. источника тока от силы тока в цепи показаны на рис.1.

Рис.1. I 0 E/r

Из графиков видно, что получить одновременно полезную мощность и к.п.д. невозможно. Когда мощность, выделяемая на внешнем участке цепи Р 1 , достигает наибольшего значения, к.п.д. в этот момент равен 50%.

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ


Соберите на экране цепь, показанную на рис. 2. Для этого сначала щелкните левой кнопкой мыши над кнопкой э.д.с. в нижней части экрана. Переместите маркер мыши на рабочую часть экрана, где расположены точки. Щелкните левой кнопкой мыши в рабочей части экрана, где будет расположен источник э.д.с.

Разместите далее последовательно с источником резистор, изображающий его внутреннее сопротивление (нажав предварительно кнопку в нижней части экрана) и амперметр (кнопка там же). Затем расположите аналогичным образом резисторы нагрузки и вольтметр , измеряющий напряжение на нагрузке.

Подключите соединительные провода. Для этого нажмите кнопку провода внизу экрана, после чего переместите маркер мыши в рабочую зону схемы. Щелкайте левой кнопкой мыши в местах рабочей зоны экрана, где должны находиться соединительные провода.

4. Установите значения параметров для каждого элемента. Для этого щелкните левой кнопкой мыши на кнопке со стрелкой . Затем щелкните на данном элементе. Подведите маркер мыши к движку появившегося регулятора, нажмите на левую кнопку мыши и, удерживая ее в нажатом состоянии, меняйте величину параметра и установите числовое значение, обозначенное в таблице 1 для вашего варианта.

Таблица 1. Исходные параметры электрической цепи

варианта

5. Установите сопротивление внешней цепи 2 Ом, нажмите кнопку «Счёт» и запишите показания электроизмерительных приборов в соответствующие строки таблицы 2.

6. Последовательно увеличивайте с помощью движка регулятора сопротивление внешней цепи на 0,5 Ом от 2 Ом до 20 Ом и, нажимая кнопку «Счёт», записывайте показания электроизмерительных приборов в таблицу 2.

7. Вычислите по формулам (2), (7), (8), (9) Р 1 , Р 2 , Р полн и h для каждой пары показаний вольтметра и амперметра и запишите рассчитанные значения в табл.2.

8. Постройте на одном листе миллиметровой бумаге графики зависимости P 1 = f(R), P 2 = f(R), P полн =f(R), h = f (R) и U = f(R).

9. Рассчитайте погрешности измерений и сделайте выводы по результатам проведённых опытов.

Таблица 2. Результаты измерений и расчётов

P полн, ВТ

Вопросы и задания для самоконтроля

  1. Запишите закон Джоуля-Ленца в интегральной и дифференциальной формах.
  2. Что такое ток короткого замыкания?
  3. Что такое полная мощность?
  4. Как вычисляется к.п.д. источника тока?
  5. Докажите, что наибольшая полезная мощность выделяется при равенстве внешнего и внутреннего сопротивлений цепи.
  6. Верно ли утверждение, что мощность, выделяемая во внутренней части цепи, постоянна для данного источника?
  7. К зажимам батарейки карманного фонаря присоединили вольтметр, который показал 3,5 В.
  8. Затем вольтметр отсоединили и на его место подключили лампу, на цоколе которой было написано: Р=30 Вт, U=3,5 В. Лампа не горела.
  9. Объясните явление.
  10. При поочерёдном замыкании аккумулятора на сопротивления R1 и R2 в них за одно и то же время выделилось равное количество тепла. Определите внутреннее сопротивление аккумулятора.

Рассмот­рим энергетические соотношения в замкнутой цепи постоянного тока. На рис. 106 была представлена замкнутая цепь постоянного тока, питаемая элементом э. д. с. Ш и с внутренним сопротивлением внешнее сопротивление цепи обозначим через R. Полная мощность, выделяемая в цепи, будет слагаться из мощностей, выделяемых во внешней и внутренней частях цепи:

W = l1R-rriR№ = ]i(R-:-Rll),

или, так как по формуле (За) § 164 I (R-{- R0) - £, то

Таким образом, полная мощность, выделяемая в цепи, выра­жается произведением из силы тока на э. д. с. элемента. Эта мощность выделяется за счет каких-либо сторонних источников энер­гии; такими источниками энергии могут быть, например, химические реакции, происходящие в элементе.

Следовательно, в цепи постоянного тока сторонние силы раз­вивают положительную мощность 1Ш.

6 С. Фриш к А. Тиыорева

замыкается внешним сопротивлением R-, определим зависимость от R следующих" величин: полной Мощности W, выделяемой в цепи, мощ­ности Wa, выделяемой во внешней части цепи, и к. п. д. % который численно равен отношению мощности, выделяющейся во внешней части цепи, ко всей мощности.

Сила тока I в цени выражается по закону Ома соотношением:

Наибольшей величины она достигает при R = 0; при этом ток называется током короткого замыкания, его сила равна:

При увеличении внешнего сопротивления сила тока падает, стремясь асимптотически к нулю при бесконечном увеличении внешнего сопро­тивления (см. рис. 108).

Полная мощность, выделяющаяся в цепи, будет:

Наибольшего значения она достигает при токе короткого замыкания (R = 0):

Рис. 108. Зависимость силы тока.„, Ш3

от внешнего сопротивления. Wmax-^г

При увеличении R мощность спадает, стремясь асимптотически к нулю при неограниченном увеличении R.

Мощность, выделяющаяся во внешней части цепи, равна:

При токе короткого замыкания R = 0, откуда мощность, выде­ляемая во внешней части цепи, при этом равна нулю. Наибольшего значения Wa достигает при R = R(I, т. е. когда внешнее сопротивле­ние равно внутреннему. При этом

т. е. равна четверти мощности при коротком замыкании.

Чтобы убедиться в том, что максимум мощности Wa получается при R=Rt>, возьмем производную от Wa по внешнему сопротивлению:

1- -(R*-R*) dR (R + Ro)4

По условию максимума требуется равенство нулю первой производной:,

Откуда R = Ra.

Можно убедиться, что при этом условии мы получаем максимум, а не минимум для Wa, определив знак второй производной.

При бесконечном увеличении внешнего сопротивления мощность, выделяемая во внешней цепи, стремится к нулю.

Коэффициент полезного действия определим отношением мощно­сти Wa, выделяемой во внешней части цепи, ко всей мощности W:

При R = 0 имеем -rj = 0; с увеличением R к. п. д. т) возрастает, стремясь к значению i]=;l при неограниченном увеличении R, однако при этом мощность, выделяю­щаяся во внешней цепи, стре­мится к нулю, поэтому усло­вие максимума к. п. д. с прак­тической точки зрения не инте­ресно.

На рис. 109 кривая / дает зависимость мощности Wa, вы­деляемой во внешней части цепи, от сопротивления внеш­ней части цепи R-, кривая 2" дает зависимость, от R полной мощности W; наконец, кривая 3 дает ход к. п. д. щ от того же внешнего сопротивления R. Как видно, »] возрастает с воз­растанием R.

Наиболее же интересная, с практической точки зрения, мощность Wa, выделяемая во внешней части цепи, сперва возрастает, а затем, достиг­нув при R = R() максимума, начинает спадать.

При R = R0, когда Wa имеет максимум, =