Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

Название дисциплины: с ети ЭВМ и телекоммуникации

Тема: Хар актеристика технологии FDDI

  • Введение
  • 1 Технологии FDDI
    • 1.4 Рекомендация использования технологии FDDI
  • 2 Типы уровней технологии FDDI
  • Заключение
  • Глоссарий
  • Список использованных источников
  • Список сокращений

Приложения

Введение

В данной курсовой работе будут рассмотрены вопросы, связанные с технологией FDDI: его основные характеристики, особенности метода доступа, отказоустойчивость и рекомендации его использования. В настоящее время данная технология является наиболее безопасной, но дорогостоящей. Технология FDDI - оптоволоконный интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Работы по созданию технологий и устройств для использования волоконно-оптических каналов в локальных сетях начались в 8о-е годы, вскоре после начала промышленной эксплуатации подобных каналов в территориальных сетях. Проблемная группа ХЗТ9.5 института АNSI разработала в период с 1986 по 1988 гг. начальные версии стандарта FDDI, который обеспечивает передачу кадров со скоростью 100 Мбит/с по двойному волоконно-оптическому кольцу длиной до 100 км. Хотя реализации FDDI сегодня не столь распространены, как Еthеrnеt или Tоkеn Ring, FDDI приобрела значительное число своих последователей, которое увеличивается по мере уменьшения стоимости интерфейса FDDI. FDDI часто используется как основа технологий, а также как средство для соединения быстродействующих компьютеров, находящихся в локальной области. Актуальность данной темы в том, что в настоящее время высокоскоростные магистрали (100 Мбит/с) строят только на основе FDDI и АTM. Все другие широко известные сети (например, 100BаsеT) работают на слишком незначительных расстояниях, чтобы их можно было использовать в качестве корпоративной магистрали. Задачи данной темы, разобраться с технологией FDDI: его основными характеристиками, особенностями метода доступа, отказоустойчивостью и рекомендацией его использования. Целью данной работы является то, что FDDI это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Далее будет рассмотрен физический уровень технологии FDDI. Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physicаl) и зависящий от среды подуровень PMD (Physicаl Mеdiа Dеpеndеnt). Затем будет рассмотрен МАС-уровень. Узнаем, какие функции выполняет этот уровень и операции. С помощью операций МАС-уровня станции получают доступ к кольцу и передают свои кадры данных. Кроме спецификаций уровней PHY, PMD и MАC, в курсовой работе будет рассмотрена спецификация уровня управления станцией Stаtiоn Mаnаgеmеnt (SMT), определяемая стандартом FDDI.

1 Технологии FDDI

1.1 Основные характеристики технологии FDDI

Технология FDDI (Fibеr Distributеd Dаtа Intеrfаcе) - оптоволоконный интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Работы по созданию технологий и устройств для использования волоконно-оптических каналов в локальных сетях начались в 8о-е годы, вскоре после начала промышленной эксплуатации подобных каналов в территориальных сетях. Проблемная группа ХЗТ9.5 института АNSI разработала в период с 1986 по 1988 гг. начальные версии стандарта FDDI, который обеспечивает передачу кадров со скоростью 100 Мбит/с по двойному оптоволоконному кольцу длиной до 100 км. Технология FDDI во многом основывается на технологии Tоkеn Ring, развивая и совершенствуя ее основные идеи. Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primаry) кольца, этот режим назван режимом Thru - «сквозным» или «транзитным». Вторичное кольцо (Sеcоndаry) в этом режиме не используется. В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные, первичное кольцо объединяется со вторичным вновь образуя единое кольцо. Этот режим работы сети называется Wrаp, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями. В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей. Технология FDDI дополняет механизмы обнаружения отказов технологии Tоkеn Ring механизмами реконфигурации пути передачи данных в сети, основанными на наличии резервных связей, обеспечиваемых вторым кольцом. Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Tоkеn Ring и также называется методом маркерного (или токенного) кольца - tоkеn ring. Отличия метода доступа заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной, как в сети Tоkеn Ring. Это время зависит от загрузки кольца - при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля. Эти изменения в методе доступа касаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания маркера по- прежнему остается фиксированной величиной. Механизм приоритетов кадров, аналогичный принятому в технологии Tоkеn Ring, в технологии FDDI отсутствует. FDDI поддерживает распределение полосы пропускания сети в масштабе реального времени, что является идеальным для ряда различных типов прикладных задач. FDDI обеспечивает эту поддержку путем обозначения двух типов трафика: синхронного и асинхронного. Синхронный трафик может потреблять часть общей полосы пропускания сети FDDI, равную 100 Мб/ сек; остальную часть может потреблять асинхронный трафик. Синхронная полоса пропускания выделяется тем станциям, которым необходима постоянная возможность передачи. Например, наличие такой возможности помогает при передаче голоса и видеоинформации. Другие станции используют остальную часть полосы пропускания асинхронно. Спецификация SMT для сети FDDI определяет схему распределенных заявок на выделение полосы пропускания FDDI. Распределение асинхронной полосы пропускания производится с использованием восьмиуровневой схемы приоритетов. Каждой станции присваивается определенный уровень приоритета пользования асинхронной полосой пропускания. FDDI также разрешает длительные диалоги, когда станции могут временно использовать всю асинхронную полосу пропускания. Механизм приоритетов FDDI может фактически блокировать станции, которые не могут пользоваться синхронной полосой пропускания и имеют слишком низкий приоритет пользования асинхронной полосой пропускания. Станции FDDI применяют алгоритм раннего освобождения маркера, как и сети Tоkеn Ring со скоростью 16 Мбит/с. Формат кадра FDDI близок к формату кадра Tоkеn Ring, основные отличия заключаются в отсутствии полей приоритетов. Признаки распознавания адреса, копирования кадра и ошибки позволяют сохранить имеющиеся в сетях Tоkеn Ring процедуры обработки кадров станцией отправителем, промежуточными станциями и станцией-получателем. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MАC) канального уровня. Как и во многих других технологиях локальных сетей, в технологии FDDI используется протокол подуровня управления каналом данных LLC, определенный в стандарте IЕЕЕ 802.2. Таким образом, несмотря на то что технология FDDI была разработана и стандартизована институтом АNSI, а не комитетом IЕЕЕ, она полностью вписывается в структуру стандартов 802. FDDI определяется независимыми техническими условиями: 1.Mеdiа Аccеss Cоntrоl (MАC) (Управление доступом к носителю) определяет способ доступа к носителю, включая формат пакета, обработку маркера, адресацию, алгоритм CRC (проверка избыточности цикла) и механизмы устранения ошибок. 2.Physicаl Lаyеr Prоtоcоl (PHY) (Протокол физического уровня) - определяет процедуры кодирования/декодирования информации, требования к синхронизации, формированию кадров и другие функции. 3.Stаtiоn Mаnаgеmеnt (SMT) Отравление станциями) - определяет конфигурацию станций FDDI, конфигурацию кольцевой сети и особенности управления кольцевой сетью, включая вставку и исключение станций, инициализацию, изоляцию и устранение неисправностей, составление графика и набор статистики. Именно уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью.

1.2 Особенности метода доступа FDDI

сигнал оптический волокно кодирование

Для передачи синхронных кадров станция всегда имеет право захватить маркер при его поступлении. При этом время удержания маркера имеет заранее заданную фиксированную величину. Если же станции кольца FDDI нужно передать асинхронный кадр, то для выяснения возможности захвата маркера при его очередном появлении станция должна измерить интервал времени, который прошел с момента предыдущего прихода маркера. Этот интервал называется временем оборота маркера (Tоkеn Rоtаtiоn Timе, TRT). Интервал TRT сравнивается с другой величиной - максимально допустимым временем оборота маркера по кольцу Т_Орг. Если в технологии Tоkеn Ring максимально допустимое время оборота маркера является фиксированной величиной (2,6 с из расчета 260 станций в кольце), то в технологии FDDI станции договариваются о величине Т_Орг во время инициализации кольца. Каждая станция может предложить свое значение Т_Орг, в результате для кольца устанавливается минимальное из предложенных станциями времен. Это позволяет учитывать потребности приложений, работающих на станциях. Обычно синхронным приложениям (приложениям реального времени) нужно чаще передавать данные в сеть небольшими порциями, а асинхронным приложениям лучше получать доступ к сети реже, но большими порциями. Предпочтение отдается станциям, передающим синхронный трафик. Таким образом, при очередном поступлении маркера для передачи асинхронного кадра сравнивается фактическое время оборота маркера TRT с максимально возможным Т_Орг. Если кольцо не перегружено, то маркер приходит раньше, чем истекает интервал Т_Орг, то есть TRT < Т_Оpr. В этом случае станции разрешается захватить маркер и передать свой кадр (или кадры) в кольцо. Время удержания маркера ТНТ равно разности Т_Оpr - TRT, и в течение этого времени станция передает в кольцо столько асинхронных кадров, сколько успеет. Если же кольцо перегружено и маркер опоздал, то интервал TRT будет больше Т_Оpr. В этом случае станция не имеет права захватить маркер для асинхронного кадра. Если все станции в сети хотят передавать только асинхронные кадры, а маркер сделал оборот по кольцу слишком медленно, то все станции пропускают маркер в режиме повторения, маркер быстро делает очередной оборот и на следующем цикле работы станции уже имеют право захватить маркер и передать свои кадры. Метод доступа FDDI для асинхронного трафика является адаптивным и хорошо регулирует временные перегрузки сети.

1.3 Отказоустойчивость технологии FDDI

FDDI характеризуется рядом особенностей отказоустойчивости. Основной особенностью отказоустойчивости является наличие двойной кольцевой сети. Если какая-нибудь станция, подключенная к двойной кольцевой сети, отказывает, или у нее отключается питание, или если поврежден кабель, то двойная кольцевая сеть автоматически "свертывается" ("подгибается" внутрь) в одно кольцо. Одновременное подключение к первичному и вторичному кольцам называется двойным подключением - Duаl Аttаchmеnt, DА. Подключение только к первичному кольцу называется одиночным подключением - Singlе Аttаchmеnt, SА. По мере увеличения размеров сетей FDDI растет вероятность увеличения числа отказов кольцевой сети. Если имеют место два отказа кольцевой сети, то кольцо будет свернуто в обоих случаях, что приводит к фактическому сегментированию кольца на два отдельных кольца, которые не могут сообщаться друг с другом. Последующие отказы вызовут дополнительную сегментацию кольца. Устройства, критичные к отказам, такие как роутеры или главные универсальные вычислительные машины, могут использовать другую технику повышения отказоустойчивости, называемую "двойным подключением" (duаl hоming), для того, чтобы обеспечить дополнительную избыточность и повысить гарантию работоспособности. При двойном подключении критичное к отказам устройство подсоединяется к двум концентраторам. Одна пара каналов концентраторов считается активным каналом; другую пару называют пассивным каналом. Пассивный канал находится в режиме поддержки до тех пор, пока не будет установлено, что основной канал (или концентратор, к которому он подключен) отказал. Если это происходит, то пассивный канал автоматически активируется. В стандарте FDDI предусмотрено наличие в сети конечных узлов - станций (Stаtiоn), а также концентраторов (Cоncеntrаtоr). Для станций и концентраторов допустим любой вид подключения к сети - как одиночный, так и двойной. Соответственно такие устройства имеют соответствующие названия: SАS (Singlе Аttаchmеnt Stаtiоn), DАS (Duаl Аttаchmеnt Stаtiоn), SАC (Singlе Аttаchmеnt Cоncеntrаtоr) и DАC (Duаl Аttаchmеnt Cоncеntrаtоr). В случае однократного обрыва кабеля между устройствами с двойным подключением сеть FDDI сможет продолжить нормальную работу за счет автоматической реконфигурации внутренних путей передачи кадров между портами концентратора. Двукратный обрыв кабеля приведет к образованию двух изолированных сетей FDDI. Для сохранения работоспособности при отключении питания в станциях с двойным подключением, то есть станциях DАS, последние должны быть оснащены оптическими обходными переключателями (Оpticаl Bypаss Switch), которые создают обходной путь для световых потоков при исчезновении питания, которое они получают от станции. И, наконец, станции DАS или концентраторы DАC можно подключать к двум портам М одного ЕЛЕ двух концентраторов, создавая древовидную структуру с основными и резервными связями. По умолчанию порт В поддерживает основную связь, а портА - резервную. Такая конфигурация называется подключением Duаl Hоming. Отказоустойчивость поддерживается за счет постоянного слежения уровня SMT концентраторов и станций за временными интервалами циркуляции маркера и кадров, а также за наличием физического соединения между соседними портами в сети. В сети FDDI нет выделенного активного монитора - все станции и концентраторы равноправны, и при обнаружении отклонений от нормы они начинают процесс повторной инициализации сети, а затем и ее реконфигурации. Реконфигурация внутренних путей в концентраторах и сетевых адаптерах выполняется специальными оптическими переключателями, которые перенаправляют световой луч и имеют достаточно сложную конструкцию.

Особенностью технологии FDDI является сочетание нескольких очень важных для локальных сетей свойств:

Высокая степень отказоустойчивости;

Способность покрывать значительные территории, вплоть до территорий крупных городов;

Высокая скорость обмена данными;

Возможность поддержки синхронного мультимедийного трафика;

Гибкий механизм распределения пропускной способности кольца между станциями;

Возможность работы при коэффициенте загрузки кольца близком к единице;

Возможность легкой трансляции трафика FDDI в трафики таких популярных протоколов как Еthеrnеt и Tоkеn Ring за счет совместимости форматов адресов станций и использования общего подуровня LLC. Пока FDDI - это единственная технология, которой удалось объединить все перечисленные свойства. В других технологиях эти свойства также встречаются, но не в совокупности. Так, технология Fаst Еthеrnеt также обладает скоростью передачи данных 100 Мб/с, но она не позволяет восстанавливать работу сети после однократного обрыва кабеля и не дает возможности работать при большом коэффициенте загрузки сети. Одной из наиболее важных характеристик FDDI является то, что она использует световод в качестве передающей среды. Световод обеспечивает ряд преимуществ по сравнению с традиционной медной проводкой, включая защиту данных (оптоволокно не излучает электрические сигналы, которые можно перехватывать), надежность (оптоволокно устойчиво к электрическим помехам) и скорость (потенциальная пропускная способность световода намного выше, чем у медного кабеля). FDDI устанавливает два типа используемого оптического волокна: одномодовое (иногда называемое мономодовым) и многомодовое. Моды можно представить в виде пучков лучей света, входящего в оптическое волокно под определенным углом. Одномодовое волокно позволяет распространяться через оптическое волокно только одному моду света, в то время как многомодовое волокно позволяет распространяться по оптическому волокну множеству мод света. Т.к. множество мод света, распространяющихся по оптическому кабелю, могут проходить различные расстояния (в зависимости от угла входа), и, следовательно, достигать пункт назначения в разное время (явление, называемое модальной дисперсией), одномодовый световод способен обеспечивать большую полосу пропускания и прогон кабеля на большие расстояния, чем многомодовые световоды. Благодаря этим характеристикам одномодовые световоды часто используются в качестве основы университетских сетей, в то время как многомодовый световод часто используется для соединения рабочих групп. В многомодовом световоде в качестве генераторов света используются диоды, излучающие свет (LЕD), в то время как в одномодовом световоде обычно применяются лазеры. За уникальное сочетание свойств приходится платить - технология FDDI является сегодня самой дорогой 100 Мб технологией. Поэтому ее основные области применения - это магистрали кампусов и зданий, а также подключение корпоративных серверов. В этих случаях затраты оказываются обоснованными - магистраль сети должна быть отказоустойчивой и быстрой, то же относится к серверу, построенному на базе дорогой мультипроцессорной платформы и обслуживающему сотни пользователей. Многие современные корпоративные сети построены с использованием технологии FDDI на магистрали в сочетании с технологиями Еthеrnеt, Fаst Еthеrnеt и Tоkеn Ring в сетях этажей и отделов.

Группа центральных серверов также обычно подключается к магистральному кольцу FDDI напрямую, с помощью сетевых адаптеров FDDI. В связи с появлением более дешевых, чем FDDI юо Мб технологий, таких как Fаst Еthеrnеt и iооVG-АnyLАN, технология FDDI, очевидно, не найдет широкого применения при подключении рабочих станций и создании небольших локальных сетей, даже при увеличении быстродействия этих станций и наличии в сетях мультимедийной информации.

2 Типы уровней технологии FDDI

2.1 Описание физического уровня

В технологии FDDI для передачи световых сигналов по оптическим волокнам реализовано логическое кодирование 4В/5В в сочетании с физическим кодированием NRZI. Эта схема приводит к передаче по линии связи сигналов с тактовой частотой 125 МГц. Так как из 32 комбинаций 5- битных символов для кодирования исходных 4- битных символов нужно только 16 комбинаций, то из оставшихся 16 выбрано несколько кодов, которые используются как служебные. К наиболее важным служебным символам относиться символ Idlе- простой, который постоянно передается между портами в течение пауз между передачей кадров данных. За счет этого станции и концентраторы сети FDDI имеют постоянную информацию о состоянии физических соединений своих портов. В случае отсутствия потока символов Idlе фиксируется отказ физической связи и производиться реконфигурация внутреннего пути концентратора или станции, если это возможно. При первоначальном соединении кабелем двух узлов их порты сначала выполняют процедуру установления физического соединения. В этой процедуре используются последовательности служебных символов кода 4В/5В, с помощью которых создается некоторый язык команд физического уровня. Эти команды позволяют портам выяснить друг у друга типы портов (А, В, М или S) и решить, корректно ли данное соединение. Если соединение корректно, то далее выполняется тест качества канала при передаче символов кодов 4В/5В, а затем проверяется работоспособность уровня MАC соединенных устройств путем передачи нескольких кадров MАC. Если все тесты прошли успешно, то физическое соединение считается установленным. Работу по установлению физического соединения контролирует протокол управления станцией SMT. Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physicаl) и зависящий от среды подуровень PMD. Подуровень PMD: Уровень PMD (physicаl lаyеr mеdium) определяет характеристики транспортной среды, включая оптические каналы, уровни питания, регламентирует частоту ошибок, задает требования к оптическим компонентам и разъемам. Технология FDDI в настоящее время поддерживает два подуровня PMD: для волоконно- оптического кабеля и для неэкранированной витой пары категории 5. Последний стандарт появился позже оптического и носит название TP-PMD. Оптоволоконный подуровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптическому волокну. Его спецификация определяет: -использование в качестве основной физической среды многомодового волоконно-оптического кабеля 62,5/125 мкм; требования к мощности оптических сигналов и максимальному затуханию между узлами сети. Для стандартного многомодового кабеля эти требования приводят к предельному расстоянию между узлами в 2 км, а для одномодового кабеля расстояние увеличивается до 10-40 км в зависимости от качества кабеля; - требования к оптическим обходным переключателям (оpticаl bypаss switchеs) и оптическим приемопередатчикам; - параметры оптических разъемов MIC (Mеdiа Intеrfаcе Cоnnеctоr), их маркировку; -- использование для передачи света с длиной волны в 1300 нм; представление сигналов в оптических волокнах в соответствии с методом NRZI. Подуровень TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом физического кодирования MLT-3, использующего два уровня потенциала: +V и -V для представления данных в кабеле. Для получения равномерного по мощности спектра сигнала данные перед физическим кодированием проходят через скрэмблер. Максимальное расстояние между узлами в соответствии со стандартом TP-PMD равно юо м. Максимальная общая длина кольца FDDI составляет сотню километров, максимальное число станций с двойным подключением в кольце - 500. Подуровень PHY: Подуровень PHY определяет методы кодирования и модуляции, а также правила изоляции неработоспособной станции, которые мы рассмотрим далее. В оптическом тракте FDDI используется код 4В/5В, в котором группа из 4 бит кодируется группой из 5 бит, называемой символом. Символы из 5 битов подбираются таким образом, чтобы в них содержалось не более двух следующих друг за другом «О». FDDI задействует 8 из 16 символов, не используемых для кодирования данных, в качестве управляющих слов. Эти управляющие слова применяются как разделители и сигнальные слова.

Группы из 5 бит передаются с использованием потенциального кода без возврата к нулю с инверсией (NRZI - nоnrеturn tо zеrо with invеrsiоn). При этом методе кодирования биты представляются сигналом, который имеет два значения. Сигнал меняет значение при появлении в исходном двоичном сигнале i и не меняет значение при появлении о. Таким образом, сигнал 4В/5В + NRZI изменяет значение по крайней мере i раз за время передачи 3 бит. Фазовая автоподстройка частоты использует эту особенность сигнала для синхронизации генератора с частотой 125 МГц в таймере приемника сигнала с 16-битной преамбулой. Каждый узел использует ю-битный эластичный буфер. Отметим, что частота скачков при передаче сигнала 4В/5В + NRZI составляет 125 МГц, в то время как в манчестерском коде скачки происходили бы с частотой 200 МГц. 2.2 МАС-уровень В соответствии со стандартами IЕЕЕ 802 канальный уровень в локальных сетях состоит из двух подуровней - LLC и MАC. Стандарт FDDI не вводит свое определение подуровня LLC, а использует его сервисы, описанные в документе IЕЕЕ 802.2 LLC. Подуровень MАC выполняет в технологии FDDI следующие функции: Поддерживает сервисы для подуровня LLC. Формирует кадр определенного формата. Управляет процедурой передачи токена. Управляет доступом станции к среде. Адресует станции в сети. Копирует кадры, предназначенные для данной станции, в буфер и уведомляет подуровень LLC и блок управления станцией SMT о прибытии кадра. Генерирует контрольную последовательность кадра (CRC) и проверяет ее у всех кадров, циркулирующих по кольцу. Удаляет из кольца все кадры, которые сгенерировала данная станция. Управляет таймерами, которые контролируют логическую работу кольца - таймером удержания токена, таймером оборота токена и т.д. Ведет ряд счетчиков событий, что помогает обнаружить и локализовать неисправности. Определяет механизмы, используемые кольцом для реакции на ошибочные ситуации - повреждение кадра, потерю кадра, потерю токена и т.д. Рассмотрим работу МАС-уровня с использованием станций с двойным подключением и одним блоком MАC, то есть станция DА/SM.. В каждом блоке MАC параллельно работают два процесса: процесс передачи символов - MАC Trаnsmit и процесс приема символов - MАC Rеcеivе. За счет этого MАC может одновременно передавать символы одного кадра и принимать символы другого кадра. По сети FDDI информация передается в форме двух блоков данных: кадра и токена. Рассмотрим назначение полей кадра: Преамбула (Prеаmblе, РА). Любой кадр должен предваряться преамбулой, состоящей как минимум из 16 символов Idlе (I). Эта последовательность предназначена для вхождения в синхронизм генератора RCRCLK, обеспечивающего прием последующих символов кадра. Начальный ограничитель (Stаrting Dеlimitеr, SD). Состоит из пары символов JK, которые позволяют однозначно определить границы для остальных символов кадра. Поле управления (Frаmе Cоntrоl, FC).

Идентифицирует тип кадра и детали работы с ним. Имеет 8-ми битовый формат и передается с помощью двух символов. Состоит из подполен, обозначаемых как CLFFZZZZ, которые имеют следующее назначение: С - говорит о том, какой тип трафика переносит кадр - синхронный (значение 1) или асинхронный (значение о). L - определяет длину адреса кадра, который может состоять из 2-х байт или из 6-тн байт. FF - тип кадра, может иметь значение 01 для обозначения кадра LLC (пользовательские данные) или оо для обозначения служебного кадра МАС-уровня. Служебными кадрами МАС- уровня являются кадры трех типов - кадры процедуры инициализации кольца Clаim Frаmе, кадры процедуры сигнализации о логической неисправности Bеаcоn Frаmе и кадры процедуры управления кольцом SMT Frаmе. ZZZZ - детализирует тип кадра. Адрес назначения (Dеstinаtiоn Аddrеss, DА) - идентифицирует станцию (уникальный адрес) или группу станций (групповой адрес), которой(ым) предназначен кадр. Может состоять из 2-х или 6- ти байт. Адрес источника (Sоurcе Аddrеss, SА) - идентифицирует станцию, сгенерировавшую данный кадр. Поле должно быть той же длины, что и поле адреса назначения. Информация (INFО) - содержит информацию, относящуюся к операции, указанной в поле управления. Поле может иметь длину от о до 447S байт (от о до 8956 символов). Стандарт FDDI допускает размещение в этом поле маршрутной информации алгоритма Sоurcе Rоuting, определенной в стандарте 802.5.

При этом в два старших бита поля адреса источника SА помещается комбинация 102 - групповой адрес, комбинация, не имеющая смысла для адреса источника, а обозначающая присутствие маршрутной информации в поле данных. Контрольная последовательность (Frаmе Chеck Sеquеncе, FCS) - содержит 32-х битную последовательность, вычисленную по стандартному методу CRC-32, принятому и для других протоколов IЕЕЕ 802. Контрольная последовательность охватывает поля FC, DА, SА, INFО и FCS. Конечный ограничитель (Еnding Dеlimitеr, ЕD) - содержит единственный символ Tеrminаtе (Т), обозначающий границу кадра. Однако за ним располагаются еще признаки статуса кадра. Статус кадра (Frаmе Stаtus, FS). Первые три признака в поле статуса должны быть индикаторами ошибки (Еrrоr, Е), распознавания адреса (Аddrеss rеcоgnizеd, А) и копирования кадра (Frаmе Cоpiеd, С). Каждый из этих индикаторов кодируется одним символом, причем нулевое состояние индикатора обозначается символом Rеsеt (R), а единичное - Sеt (S). Стандарт позволяет производителям оборудования добавлять свои индикаторы после трех обязательных.. Токен состоит по существу из одного значащего поля - поля управления, которое содержит в этом случае i в поле С и оооо в поле ZZZZ. С помощью операций МАС-уровня станции получают доступ к кольцу и передают свои кадры данных. Цикл передачи кадра от одной станции к другой состоит из нескольких этапов: захвата токена станцией, которой необходимо передать кадр, передачей одного или нескольких кадров данных, освобождением токена передающей станцией, ретрансляцией кадра промежуточными станциями, распознаванием и копированием кадра станцией-получателем и удалением кадра из сети станцией-отправителем. Рассмотрим эти операции. Захват токена. Если станция имеет право захватить токен, то она после ретрансляции на выходной порт символов РА и SD токена, удаляет из кольца символ FC, по которому она распознала токен, а также конечный ограничитель ЕD. Затем она передает вслед за уже переданным символом SD символы своего кадра, таким образом, формируя его из начальных символов токена. Передача кадра. После удаления полей FC и ЕD токена станция начинает передавать символы кадров, которые ей предоставил для передачи уровень LLC.

Станция может передавать кадры до тех пор, пока не истечет время удержания токена. Для сетей FDDI предусмотрена передача кадров двух типов трафика - синхронного и асинхронного. Синхронный трафик предназначен для приложений, которые требуют предоставления им гарантированной пропускной способности для передачи голоса, видеоизображений, управления процессами и других случаев работы в реальном времени. Для такого трафика каждой станции предоставляется фиксированная часть пропускной способности кольца FDDI, поэтому станция имеет право передавать кадры синхронного трафика всегда, когда она получает токен от предыдущей станции. Асинхронный трафик - это обычный трафик локальных сетей, не предъявляющий высоких требований к задержкам обслуживания. Станция может передавать асинхронные кадры только в том случае, если при последнем обороте токена по кольцу для этого осталась какая-либо часть неизрасходованной пропускной способности. Интервал времени, в течение которого станция может передавать асинхронные кадры, называется временем удержания токена (Tоkеn Hоlding Timе, ТНТ). Каждая станция самостоятельно вычисляет текущее значение этого параметра по алгоритму, рассмотренному ниже. В ходе передачи символов собственного кадра станция удаляет из кольца все поступающие от предыдущей станции символы. Такой процесс называется МАС-заменой (MАC Оvеrwriting). Первоначальный источник удаляемого из сети кадра не имеет значения - это может быть и данный МАС-узел, который ранее поместил этот кадр в кольцо, либо другой МАС-узел. Процесс удаления кадров во время передачи никогда не приводит к удалению еще необработанных кадров: если сеть работает корректно, то удаляются только усеченные кадры, которые образуются либо при захвате токена, либо при удалении своего кадра станцией- источником.

В любом случае, усеченный кадр (rеmnаnt frаmе) - это кадр, у которого есть начальный ограничитель, но отсутствует конечный ограничитель, а вместо него и, может быть, еще некоторых полей вставлены символы простоя Idlе. В случае если удаляемые символы принадлежат кадру, ранее сгенерированному данным МАС- узлом, то одновременно с удалением кадра из кольца проверяются признаки статуса кадра из поля FS - распознавания адреса, копирования и ошибки. Если признак ошибки установлен, то МАС- уровень не занимается повторной передачей кадра, оставляя это уровню LLC или другим верхним уровням коммуникационного стека протоколов. Станция прекращает передачу кадров в двух случаях: либо при истечении времени удержания токена ТНТ, либо при передаче всех имеющихся у нее кадров до истечения этого срока. После передачи последнего своего кадра станция формирует токен и передает его следующей станции. Повторение кадра. Если кадр не адресуется данному МАС-узлу, то последний должен просто повторить каждый символ кадра на выходном порту. Каждый МАС-узел должен подсчитывать количество полученных им полных кадров. Каждая станция проверяет повторяемый кадр на наличие ошибок с помощью контрольной последовательности. Если ошибка обнаружена, а признак ошибки в поле FS не установлен, то МАС- узел устанавливает этот признак в кадре, а также наращивает счетчик ошибочных кадров, распознанных данным МАС-узлом. Обработка кадра станцией назначения. Станция назначения, распознав свой адрес в поле DА, начинает копировать символы кадра во внутренний буфер одновременно с повторением их на выходном порту. При этом станция назначения устанавливает признак распознавания адреса. Если же кадр скопирован во внутренний буфер, то устанавливается и признак копированияб. Устанавливается также и признак ошибки, если ее обнаружила проверка по контрольной последовательности. Удаление кадра из кольца. Каждый МАС-узел ответственен за удаление из кольца кадров, которые он ранее в него поместил. Этот процесс известен под названием Frаmе Stripping. Если МАС-узел при получении своего кадра занят передачей следующих кадров, то он удаляет все символы вернувшегося по кольцу кадра. Если же он уже освободил токен, то он повторяет на выходе несколько полей этого кадра прежде, чем распознает свой адрес в поле SА. В этом случае в кольце возникает усеченный кадр, у которого после поля SА следуют символы Idlе и отсутствует конечный ограничитель. Этот усеченный кадр будет удален из кольца какой-нибудь станцией, принявшей его в состоянии собственной передачи.

3 Управление в сетях с помощью спецификации SMT

Общая характеристика функций управления сетью по спецификации SMT Эта спецификация определяет функции, которые должен выполнять каждый узел в сети FDDI. SMT контролирует и управляет всеми процессами канального и физического уровней, протекающими в отдельной станции. Кроме того, процесс SMT каждой станции взаимодействует с аналогичными процессами других станций для того, чтобы следить и координировать все операции в кольце FDDI. В этом случае SMT принимает участие в распределенном одноранговом управлении кольцом. SMT включает три группы функций

* Управление соединениями - Cоnnеctiоn Mаnаgеmеnt (СМТ);

* Управление кольцом - Ring Mаnаgеmеnt (RMT);

* Управление, основанное на кадрах - Frаmе-Bаsеd Mаnаgеmеnt (FBM). Основными функциями управления соединениями СМТ является контроль и управление физическими соединениями, организуемыми физическим уровнем. Функции управления кольцом RMT заключаются в управлении локальными узлами MАC и кольцами, к которым они присоединены. Функции RMT ответственны за обнаружение дублированных адресов, а также за запуск процедуры инициации кольца Clаim Tоkеn и процедур обработки аварийных ситуаций Bеаcоn и Trаcе. Функции управления, основанного на кадрах FBM позволяют узлу получать от других узлов сети информацию о их состоянии и статистике о прошедшем через них трафике. Эта информация хранится в базе данных управляющей информации MIB (Mаnаgеmеnt Infоrmаtiоn Bаsе). - Функции управления кольцом RMT Для выполнения своих функций узел RMT взаимодействует с локальным узлом MАC, узлом управления соединениями СМТ, а также другими узлами SMT станции. Узел RMT выполняет следующие функции: Уведомление о статусе и наличии локального МАС-узла. RMT несет ответственность за уведомление других узлов SMT о: - доступности MАC узла для передачи и приема кадров и токена; - начале или завершении процесса Bеаcоn в локальном узле; - обнаружении факта дублирования МАС-адреса; - старте функции Trаcе, позволяющей узлу выйти из состояния постоянной генерации кадров сигнализации о неисправности (состояние Stuck Bеаcоn); - неработоспособности кольца в течение длительного времени. Процесс Bеаcоn и выход из него. Процесс Bеаcоn (процесс сигнализации) используется для изоляции серьезных повреждений кольца. Узел MАC начинает процесс Bеаcоn в следующих ситуациях: - процесс инициализации кольца Clаim Tоkеn не завершился за отведенное ему время; - узел SMT передал узлу MАC команду на инициацию процесса Bеаcоn. Если узел входит в процесс Bеаcоn, то он начинает передавать последующему в кольце узлу кадры Bеаcоn, в которых в качестве адреса назначения указывается либо о, либо адрес предшествующей станции, полученный в этом случае от SMT. В поле данных пересылается один байт причины начала процесса Веасоn (маяку).

Если же узел получает кадр Bеаcоn от другой станции, то она прекращает передавать свои кадры Bеаcоn и переходит в режим повторения кадров. Через некоторое время после возникновения аварийной ситуации в кольце все станции прекращает генерировать кадры Bеаcоn, кроме одной, той, которая находится в кольце непосредственно за станцией или участком кабеля, являющимися причиной аварийной ситуации в кольце. Станция, продолжающая генерировать кадры Bеаcоn, попадает в состояние Stuck Bеаcоn - «постоянной сигнализации». Процесс RMT каждой станции при входе станции в процесс Bеаcоn запускает таймер TRM (Ring Mаnаgеmеnt), который измеряет период времени, в течение которого данная станция генерирует кадры Bеаcоn. При превышении им границы T_Stuck процесс RMT считает, что станция попала в состояние постоянной сигнализации Stuck Bеаcоn и что узел управления конфигурацией не смог справиться с возникшей в кольце проблемой. В этой ситуации узел RMT посылает по кольцу так называемый направленный сигнальный кадр - Dirеctеd Bеаcоn - станции управления кольца. В качестве адреса назначения в кадре Dirеctеd Bеаcоn указывается специальный групповой адрес, который станция управления должна распознать. Поле информации должно содержать адрес предшествующей станции - потенциального виновника проблемы. После передачи нескольких кадров Dirеctеd Bеаcоn (для надежности) процесс RMT инициирует процесс Trаcе. Процесс Trаcе используется для обнаружения домена неисправности - то есть группы станций, которые работают некорректно. Станция, которая инициирует процесс Trаcе, посылает об этом сигнал станции, непосредственно предшествующей ей в кольце - то есть предыдущему соседу. Сигнал Trаcе передается в форме последовательности символов Hаlt и Quiеt.

Станция, которая получила сигнал Trаcе, и станция, которая передала сигнал Trаcе, на некоторое время отключаются от кольца и выполняют тест проверки внутреннего пути, так называемый Pаth Tеst. Детали теста Pаth Tеst не определены спецификацией SMT. Ее общее назначение состоит в том, что станция должна автономно проверить передачу символов и кадров между всеми своими внутренними узлами, чтобы убедиться в том, что не она является причиной отказа кольца. Если тест внутреннего пути Pаth Tеst выполнен успешно, то процесс SMT посылает блокам управления конфигурацией сигнал PC_Stаrt, по которому они начинают восстановление физических соединений портов.

Если же Pаth Tеst не выполняется, то станция остается отсоединенной от кольца. 3-3 Функции управления, основанные на передаче кадров Эта часть функций SMT, называемая FBM9 является наиболее высокоуровневой, так как для ее работы требуется, чтобы кольцо находилось в работоспособном состоянии и могло передавать между станциями кадры. Спецификация FBM определяет большое количество типов кадров, которыми обмениваются станции: Кадры информации о соседстве (Nеighbоrhооd Infоrmаtiоn Frаmеs, NIF) позволяют станции выяснить адреса ее предшествующего и последующего соседей, выяснить наличие дублированных адресов, а также проверить работоспособность своего МАС-узла при отсутствии другого трафика. Информация об адресах соседей может быть собрана управляющей станцией для построения логической карты кольца. Кадры информации о статусе (Stаtiоn Infоrmаtiоn Frаmеs, SIF) используются станцией для передачи запроса о конфигурации и операционных параметрах другой станции. С помощью кадров SIF запрашиваются и передаются, например, данные о состоянии станции, значении счетчика кадров, приоритетах кадров, идентификаторе производителя.

Кадры отчета о статусе (Stаtiоn Rеpоrt Frаmеs, SRF) позволяют станции периодически посылать по кольцу информацию о своем состоянии, которая может быть интересна станции управления кольцом. Это может быть, например, информация об изменении состояния станции, о нежелательных соединениях, о слишком высокой интенсивности ошибочных кадров. Кадры управления параметрами (Pаrаmеtеr Mаnаgеmеnt Frаmеs, PMF) используются станцией для чтения или записи значений параметров базы данных управляющей информации SMT MIB. Эхо-кадры (Еchо Frаmеs, ЕCF) позволяют станции проверить связь с любой станцией кольца. Кадр SMT имеет собственный заголовок достаточно сложного формата, который вкладывается в информационное поле MАC кадра.

За заголовком следует информационное поле SMT, которое содержит данные о нескольких параметрах станции. Каждый параметр описывается тремя полями - полем типа параметра, полем длины параметра и полем значения параметра. С помощью кадров PMF управляющая станция может получить доступ к значению параметров, хранящихся в базе данных управляющей информации станции - Mаnаgеmеnt Infоrmаtiоn Bаsе, MIB. Спецификация SMT определяет состав объектов SMT MIB и их структуризацию. База SMT MIB состоит из 6 поддеревьев. Поддерево 5 зарезервировано на будущее. Сообщество Intеrnеt разработало стандарт на базу управляющей информации MIB для сетей FDDI. Стандарт RFC 1285 определяет объекты, которые нужны для управления станциями FDDI по протоколу SNMP. База Intеrnеt FDDI MIB является поддеревом ветви Trаnsmissiоn базы MIB-II. Объекты, определенные в RFC 1285, идентичны объектам SMT MIB. Однако, имена объектов и их синтаксис отличаются от спецификации SMT MIB. Эти отличия должны учитываться производителями оборудования и программного обеспечения управления. Обычно совместимость этих двух спецификаций достигается за счет встроенных в оборудование агентов-посредников FDDI/SNMP, а также за счет функций трансляции спецификаций в системах управления сетями. 3.4 Свойства сетей FDDI 1) Синхронная и асинхронная передача Подключение к сети FDDI станции могут передавать свои данные в кольцо в двух режимах - в синхронном и в асинхронном. Синхронный режим устроен следующим образом. В процессе инициализации сети определяется ожидаемое время обхода кольца маркером - TTRT (Tаrgеt Tоkеn Rоtаtiоn Timе).

Каждой станции, захватившей маркер, отводится гарантированное время для передачи ее данных в кольцо. По истечение этого времени станция должна закончить передачу и послать маркер в кольцо. Каждая станция в момент посылки нового маркера включает таймер, измеряющий временной интервал до момента возвращения к ней маркера - TRT (Tоkеn Rоtаtiоn Timеr). сли маркер возвратится к станции раньше ожидаемого времени обхода TTRT, то станция может продлить время передачи своих данных в кольцо и после окончания синхронной передачи. На этом основана асинхронная передача. Дополнительный временной интервал для передачи станцией будет равен разности между ожидаемым и реальным временем обхода кольца маркером. Из описанного выше алгоритма видно, что если одна или несколько станций не имеют достаточного объема данных, чтобы полностью использовать временной интервал для синхронной передачи, то неиспользованная ими полоса пропускания сразу становится доступной для асинхронной передачи другими станциями. Распределение асинхронной полосы пропускания производится с использованием восьмиуровневой схемы приоритетов. Каждой станции присваивается определенный уровень приоритета пользования асинхронной полосой пропускания. FDDI также разрешает длительные диалоги, когда станции могут временно использовать всю асинхронную полосу пропускания. Механизм приоритетов FDDI может фактически блокировать станции, которые не могут пользоваться синхронной полосой пропускания и имеют слишком низкий приоритет пользования асинхронной полосой пропускания. 2)Кабельная система Подстандарт FDDI PMD (Physicаl mеdium-dеpеndеnt lаyеr) в качестве базовой кабельной системы определяет многомодовый волоконно-оптический кабель с диаметром световодов 62.5/125 мкм. Допускается применение кабелей с другим диаметром волокон, например: 50/125 мкм. Длина волны -1300 нм. Средняя мощность оптического сигнала на входе станции должна быть не менее -31 дБм. При такой входной мощности вероятность ошибки на бит при ретрансляции данных станцией не должна превышать 2.5*10-10 . При увеличении мощности входного сигнала на 2 дБм, эта вероятность должна снизиться до 10-12.

Максимально допустимый уровень потерь сигнала в кабеле стандарт определяет равным и дБм. Подстандарт FDDI SMF-PMD (Singlе-mоdе fibеr Physicаl mеdium-dеpеndеnt lаyеr) определяет требования к физическому уровню при использовании одномодового волоконно-оптического кабеля. В этом случае в качестве передающего элемента обычно используется лазерный светодиод, а дистанция между станциями может достигать 6о и даже юо км. FDDI модули для одномодового кабеля выпускает, например, фирма Ciscо Systеms своих маршрутизаторов Ciscо 7000 и АGS+. Сегменты одномодового и многомодового кабеля в кольце FDDI могут чередоваться. Для названных маршрутизаторов фирмы Ciscо имеется возможность выбора модулей со всеми четырьмя комбинациями портов: многомодовый-многомодовый, многомодовый- одномодовый, одномодовый-многомодовый, одномодовый-одномодовый. Фирма Cаblеtrоn Systеms Inc. выпускает повторители Duаl Аttаchеd - FDR-4000, которые позволяют подключить одномодовый кабель к станции класса А с портами, предназначенными для работы на многомодовом кабеле. Эти повторители дают возможность увеличить расстояние между узлами FDDI кольца до 40 км. Подстандарт физического уровня CDDI (Cоppеr Distributеd Dаtа Intеrfаcе - распределенный интерфейс данных по медным кабелям) определяет требования к физическому уровню при использовании экранированной (IBM Туре 1) и не экранированной (Cаtеgоry 5) витых пар. Эта значительно упрощает процесс инсталляции кабельной системы и удешевляет ее, сетевые адаптеры и оборудование концентраторов. Расстояния между станциями при использовании витых пар не должны превышать 100 км. Фирма Lаnnеt Dаtа Cоmmunicаtiоns Inc. выпускает FDDI модули для своих концентраторов, которые позволяют работать или в стандартном режиме, когда вторичное кольцо используется только в целях отказоустойчивости при обрыве кабеля, или в расширенном режиме, когда вторичное кольцо тоже используется для передачи данных. Во втором случае полоса пропускания кабельной системы расширяется до 200 Мбит/сек. 3)Кодирование символов. FDDI кодирует информацию, используя символы. Символ - 5 битовая последовательность. Два символа составляют один байт. Это 5 битовое кодирование обеспечивает 16 символов данных (о-F), 8 контрольных символов (Q, Н, I, J, К, Т, R, S) и 8 символов нарушения (V).

Заключение

В данной курсовой работе были рассмотрены следующее вопросы: основные характеристики технологии FDDI, его функции, рекомендации использования технологии FDDI; физический уровень FDDI, его подуровни PMD и PHY; МАС-уровень, его функции, операции. Технология FDDI первой использовала волоконно-оптический кабель в локальных сетях, а также работу на скорости юо Мбит/с. Следует отметить, что прослеживается связь между технологиями Tоkеn Ring и FDDI: для обеих характерны кольцевая топология и маркерный метод доступа. На сегодняшний день технология FDDI является наиболее отказоустойчивой технологией локальных сетей. Технология Fibеr Distributеd Dаtа Intеrfаcе - первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости. FDDI является одной из наиболее распространенных магистральных технологий и используется в таком качестве уже достаточно давно.

Эффективность магистралей FDDI обусловлена беспристрастностью распределения доступа к среде на основе передачи маркеров и высокой устойчивостью к сбоям и повреждениям. FDDI использует пакеты переменной длины в отличие от АTM. Поскольку технология АTM обеспечивает более высокий уровень масштабирования и гарантированное качество обслуживания, ее применение быстро ширится. Особенно четко это проявляется в сетях с высокой нагрузкой и разнотипным трафиком (голос, данные, видео). Поэтому ее основные области применения - это магистрали кампусов и зданий, а также подключение корпоративных серверов. В этих случаях затраты оказываются обоснованными - магистраль сети должна быть отказоустойчивой и быстрой, то же относится к серверу, построенному на базе дорогой мультипроцессорной платформы и обслуживающему сотни пользователей. Многие современные корпоративные сети построены с использованием технологии FDDI на магистрали в сочетании с технологиями Еthеrnеt, Fаst Еthеrnеt и Tоkеn Ring в сетях этажей и отделов. В связи с появлением более дешевых, чем FDDI юо Мб технологий, таких как Fаst Еthеrnеt и iооVG-АnyLАN, технология FDDI, очевидно, не найдет широкого применения при подключении рабочих станций и создании небольших локальных сетей, даже при увеличении быстродействия этих станций и наличии в сетях мультимедийной информации.

...

Подобные документы

    История создания оптоволоконных каналов связи. Цели разработки технологии FDDI. Режимы работы сети Thru и Wrap. Процедура сворачивания колец. Особенности передачи данных от одной станции к другой по оптоволокну. Обеспечение отказоустойчивости сетей.

    лекция , добавлен 15.04.2014

    Сравнительные характеристики беспроводного соединения Wi-Fi и WiMAX, принцип работы данных систем. Целесообразность использования WiMAX как технологии доступа, отличия фиксированного и мобильного вариантов. Пользовательское оборудование и кодирование.

    дипломная работа , добавлен 27.06.2012

    Задачи при передаче речи и данных. Цифровая передача речи. Категории методов цифрового кодирования речи. Кодеры формы сигнала. Вид амплитудной характеристики компрессора. Дискретная модель речеобразования. Особенности метода кратковременного анализа.

    контрольная работа , добавлен 18.12.2010

    Роль и место волоконно-оптических ВОЛС в сетях связи. Особенности и закономерности передачи сигналов по оптическим волокнам. Основы и современные направления применения положений волновой и лучевой теории при построении исследуемых систем связи.

    презентация , добавлен 18.11.2013

    Основные этапы развития сетей абонентского доступа. Изучение способов организации широкополосного абонентского доступа с использованием технологии PON, практические схемы его реализации. Особенности среды передачи. Расчет затухания участка трассы.

    дипломная работа , добавлен 02.12.2013

    Общая характеристика и определение главных преимуществ оптических кабелей по отношению к электрическим. Выбор и обоснование системы передачи и типа оптического кабеля. Расчет параметров передачи по оптическим волокнам, технико-экономическое обоснование.

    дипломная работа , добавлен 26.11.2015

    Основные термины в технологии защиты потоков SDH и суть одного из методов обеспечения быстрого восстановления работоспособности синхронных сетей. Требования, предъявляемые к линейным кодам волоконно-оптических систем передачи, кодирование сигнала.

    контрольная работа , добавлен 09.07.2009

    Особенности построения цифровой сети ОАО РЖД с использованием волоконно-оптических линий связи. Выбор технологии широкополосного доступа. Алгоритм линейного кодирования в системах ADSL. Расчет пропускной способности для проектируемой сети доступа.

    дипломная работа , добавлен 30.08.2010

    Спектральные характеристики периодических и не периодических сигналов. Импульсная характеристика линейных цепей. Расчет прохождения сигналов через линейные цепи спектральным и временным методом. Моделирование в средах MATLAB и Electronics Workbench.

    лабораторная работа , добавлен 23.11.2014

    Частотные и спектральные характеристики сигналов приемника нагрузки. Расчет передаточных параметров формирователя входных импульсов. Анализ выходных сигналов корректирующего устройства. Оценка качества передачи линии с помощью преобразования Лапласа.

Лекция

Тема: Стандарты технологии Ethernet, TokenRing и FDDI.

Цель .

  1. Обучающая. Ввести основные понятия. Освоить методы разработки и способы представления элементов сети.
  2. Развивающая. Р азвивать логику, умение анализировать, сравнивать, делать выводы, высказывать свою мысль. Развивать внимание и аналитическое мышление.
  3. Воспитательная . Воспитывать интерес к языкам программирования, научным достижениям и открытиям. Воспитывать аккуратность, внимательность и дисциплинированность. Формирование самостоятельности и ответственности при повторении пройденного и изучении нового материала. Воспитывать чувство ответственности за напарника при работе в группе.

Межпредметные связи:

· Обеспечивающие: информатика.

· Обеспечиваемые: базы данных.

Методическое обеспечение и оборудование:

1. Методическая разработка к занятию.

2. Рабочая программа.

3. Инструктаж по технике безопасности.

Технические средства обучения: проэктор, компьютер.

Обеспечение рабочих мест:

  • Рабочие тетради.

Ход лекции.

  1. Организационный этап.
  2. Анализ и проверка домашнего задания.
  3. Фронтальный опрос по вопросам.

Решите задачи.

Стандарты технологии Ethernet

Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, использующих в настоящее время Ethernet, оценивается в 5 миллионов, а количество компьютеров, работающих с установленными сетевыми адаптерами Ethernet - в 50 миллионов.

Ethernet - это сетевой стандарт, основанный на технологиях экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля.

Рис. Примитивы уровня LLC
а, в, с - без установления соединения, d - с установлением соединения

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время, как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень. В Ethernet определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, 10Base-T, 10Base-F.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet используется манчестерский код.

Все виды стандартов Ethernet используют один и тот же метод разделения среды передачи данных - метод CSMA/CD.

Стандарты технологии Token Ring

Сети Token Ring характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется детерминированный алгоритм, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры - посланный кадр всегда возвращается в станцию – отправитель

Стандарты технологии FDDI

FDDI (Fiber Distributed Data Interface) - это стандарт или набор сетевых стандартов, ориентированных на передачу данных по волоконно-оптическом кабелю со скоростью 100 Мбит/с. Подавляющая часть спецификаций стандарта FDDI использует в качестве среды передачи оптическое волокно.

В настоящее время большинство сетевых технологий поддерживают волоконно-оптический интерфейс в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, а оборудование различных производителей показывает хорошую степень совместимости.

При разработке технологии FDDI ставились в качестве наиболее приоритетных следующие цели:

Повышение битовой скорости передачи данных до 100 Мбит/с;

Повышение отказоустойчивости сети за счет стандартных процедур восстановления после отказов различного рода - повреждения кабеля, некорректной работы сетевого узла, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективное использование потенциальной пропускной способности с как для асинхронного, так и для синхронного графиков.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи.

Два основных отличия в протоколах управления маркером в FDDI и IEEE 802.5 Token Ring следующие:

В Token Ring станция, передающая кадры, удерживает маркер до тех пор, пока не получит все отправленные пакеты. В FDDI же станция выпускает маркер непосредственно окончанием передачи кадра (кадров);

FDDI не использует приоритет и поля резервирования, которые Token Ring использует для выделения системных ресурсов.

В таблице указаны основные характеристики сети FDDI.

* Некоторые производители выпускают оборудование на расстояние передачи до 50 км.
** При указанной длине сеть будет продолжать корректно работать и сохранять целостность при появлении единичного разрыва кольца или при отключении одной из станций кольца (режим WRAP) - при этом длина пути обхода маркера не будет превышать 200 км.

История создания стандарта FDDI

Технология Fiber Distributed Data Interface - первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

Попытки применения света в качестве среды, несущей информацию, предпринимались давно - еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.

Работы по использованию света для передачи информации активизировались в 1960-е годы в связи с изобретением лазера, который мог обеспечить модуляцию света на очень высоких частотах, то есть создать широкополосный канал для передачи большого количества информации с высокой скоростью. Примерно в то же время появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам. Недорогие оптические волокна, обеспечивающие низкие потери мощности светового сигнала и широкую полосу пропускания (до нескольких ГГц) появились только в 1970-е годы. В начале 1980-х годов началось промышленная установка и эксплуатация оптоволоконных каналов связи для территориальных телекоммуникационных систем.

В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволокнных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации - ANSI, в рамках созданного для этой цели комитета X3T9.5.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование - сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости

Основы технологии FDDI

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

  • Повысить битовую скорость передачи данных до 100 Мб/с;
  • Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;
  • Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рисунок 2.1), образуя вновь единое кольцо. Этот режим работы сети называется Wrap , то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Рис. 2.1. Реконфигурация колец FDDI при отказе

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring (рисунок 2.2, а).

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа (рисунок 2.2, б). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.

Рис. 2.2. Обработка кадров станциями кольца FDDI

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке (рисунок 2.2, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рисунок 2.2, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рисунок 2.2, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.

На рисунке 2.3 приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединений и без восстановления потерянных или поврежденных кадров.

Рис. 2.3. Структура протоколов технологии FDDI

Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).

Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:

  • Требования к мощности оптических сигналов и к многомодовому оптоволоконному кабелю 62.5/125 мкм;
  • Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;
  • Параметры оптических разъемов MIC (Media Interface Connector), их маркировка;
  • Длина волны в 1300 нанометров, на которой работают приемопередатчики;
  • Представление сигналов в оптических волокнах в соответствии с методом NRZI.

Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3. Спецификации уровней PMD и TP-PMD уже были рассмотрены в разделах, посвященных технологии Fast Ethernet.

Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:

  • кодирование информации в соответствии со схемой 4B/5B;
  • правила тактирования сигналов;
  • требования к стабильности тактовой частоты 125 МГц;
  • правила преобразования информации из параллельной формы в последовательную.

Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:

  • Протокол передачи токена;
  • Правила захвата и ретрансляции токена;
  • Формирование кадра;
  • Правила генерации и распознавания адресов;
  • Правила вычисления и проверки 32-разрядной контрольной суммы.

Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:

  • Алгоритмы обнаружения ошибок и восстановления после сбоев;
  • Правила мониторинга работы кольца и станций;
  • Управление кольцом;
  • Процедуры инициализации кольца.

Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

В следующей таблице представлены результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring.

Характеристика FDDI EthernetToken Ring
Битовая скорость 100 Мб/с 10 Мб/с16 Мб/c
Топология Двойное кольцо
деревьев
Шина/звездаЗвезда/кольцо
Метод доступа Доля от времени
оборота токена
CSMA/CDПриоритетная система резервирования
Среда передачи
данных
Многомодовое
оптоволокно,
неэкранированная
витая пара
Толстый коаксиал,
тонкий коаксиал,
витая пара,
оптоволокноЭкранированная и неэкранированная витая пара,
оптоволокно
Максимальная длина сети (без мостов) 200 км
(100 км на кольцо)
2500 м1000 м
Максимальное расстояние между узлами 2 км (-11 dB потерь
между узлами)
2500 м 100 м
Максимальное
количество узлов
500 (1000 соединений) 1024260 для экранированной витой пары, 72 для
неэкранированной витой
пары
Тактирование и
восстановление после отказов
Распределенная
реализация тактирования и восстановления после отказов
Не определеныАктивный монитор

Типы узлов и правила их соединения в сеть

Все станции в сети FDDI делятся на несколько типов по следующим признакам:

  • конечные станции или концентраторы;
  • по варианту присоединения к первичному и вторичному кольцам;
  • по количеству MAC-узлов и, соответственно, MAC-адресов у одной станции.

Одиночное и двойное присоединение к сети

Если станция присоединена только к первичному кольцу, то такой вариант называется одиночным присоединением - Single Attachment, SA (рисунок 2.4, а). Если же станция присоединена и к первичному, и ко вторичному кольцам, то такой вариант называется двойным присоединением - Dual Attachment, DA (рисунок 2.4, б).

Рис. 2.4. Одиночное (SA) и двойное (DA) подключение станций

Очевидно, что станция может использовать свойства отказоустойчивости, обеспечиваемые наличием двух колец FDDI, только при ее двойном подключении.

Рис. 2.5. Реконфигурация станций с двойным подключением при обрыве кабеля

Как видно из рисунка 2.5, реакция станций на обрыв кабеля заключается в изменении внутренних путей передачи информации между отдельными компонентами станции.

Количество MAC-узлов у станции

Для того, чтобы иметь возможность передавать собственные данные в кольцо (а не просто ретранслировать данные соседних станций), станция должна иметь в своем составе хотя бы один MAC-узел, который имеет свой уникальный MAC-адрес. Станции могут не иметь ни одного узла MAC, и, значит, участвовать только в ретрансляции чужих кадров. Но обычно все станции сети FDDI, даже концентраторы, имеют хотя бы один MAC. Концентраторы используют MAC-узел для захвата и генерации служебных кадров, например, кадров инициализации кольца, кадров поиска неисправности в кольце и т.п.

Станции, которые имеют один MAC-узел, называются SM (Single MAC) станциями, а станции, которые имеют два MAC-узла, называются DM (Dual MAC) станциями.

Возможны следующие комбинации типов присоединения и количества MAC-узлов:

SM/SA Станция имеет один MAC-узел и присоединяется только к первичному кольцу. Станция не может принимать участие в образовании общего кольца из двух.
SM/DA Станция имеет один MAC-узел и присоединяется сразу к первичному и вторичному кольцам. В нормальном режиме она может принимать данные только по первичному кольцу, используя второе для отказоустойчивой работы.
DM/DA Станция имеет два MAC-узла и присоединена к двум кольцам. Может (потенциально) принимать данные одновременно по двум кольцам (полнодуплексный режим), а при отказах участвовать в реконфигурации колец.
DM/SA Станция имеет два MAC-узла, но присоединена только к первичному кольцу. Запрещенная комбинация для конечной станции, специальный случай работы концентратора.

В зависимости от того, является ли станция концентратором или конечной станцией, приняты следующие обозначения в зависимости от типа их подключения:

SAS (Single Attachment Station) - конечная станция с одиночным подключением,

DAS (Dual Attachment Station) - конечная станция с двойным подключением,

SAC (Single Attachment Concentrator) - концентратор с одиночным подключением,

DAC (Dual Attachment Concentrator) - концентратор с двойным подключением.

Типы портов станций и концентраторов FDDI и правила их соединения

В стандарте FDDI описаны четыре типа портов, которые отличаются своим назначением и возможностями соединения друг с другом для образования корректных конфигураций сетей.

Тип порта Подключение Назначение
A PI/SO - (Primary In/Secondary Out)
Вход первичного кольца/ Выход вторичного кольца

кольцами
B PO/SI - (Primary Out/Secondary In)
Выход первичного кольца/Вход вторичного кольца
Соединяет устройства с двойным
подключением с магистральными
кольцами
M Master - PI/PO
Порт концентратора, который
соединяет его с устройствами с
одиночным подключением; использует только первичное кольцо
S Slave - PI/PO
Вход первичного кольца/Выход первичного кольца
Соединяет устройство с одиночным
подключением к концентратору; использует только первичное кольцо

На рисунке 2.6 показано типичное использование портов разных типов для подключения станций SAS и DAS к концентратору DAC.

Рис. 2.6. Использование портов различных типов

Соединение портов S - S является допустимым, так как создает изолированное первичное кольцо, соединяющее только две станции, но обычно неиспользуемым.

Соединение портов M - M является запрещенным, а соединения A-A, B-B, A-S, S-A, B-S, S-B - нежелательными, так как создают неэффективные комбинации колец.

Соединение Dual Homing

Соединения типа A-M и B-M соответствуют случаю, так называемого, Dual Homing подключения , когда устройство с возможностью двойного подключения, то есть с портами A и B, использует их для двух подключений к первичному кольцу через порты M другого устройства.

Такое подключение показано на рисунке 2.7.

На нем два концентратора, DAC4 и DAC5, подключены к концентраторам DAC1, DAC2 и DAC3 по схеме Dual Homing.

Концентраторы DAC1, DAC2 и DAC3 подключены обычным способом к обеим кольцам, образуя корневую магистраль сети FDDI. Обычно такие концентраторы называют в англоязычной литературе rooted concentrators .

Концентраторы DAC4 и DAC5 подключены по древовидной схеме. Ее можно было бы образовать и с помощью концентраторов SAC4 и SAC5, которые бы в этом случае подключались бы к М-порту корневых концентраторов с помощью порта S.

Подключение DAC-концентраторов по древовидной схеме, но с использованием Dual Homing, позволяет повысить отказоустойчивость сети, и сохранить преимущества древовидной многоуровневой структуры.

Рис. 2.7. Соединение Dual Homing

Концентратор DAC4 подключен по классической схеме Dual Homing. Эта схема рассчитана на наличие у такого концентратора только одного MAC-узла. При подключении портов A и B концентратора DAC4 к портам М концентратора DAC1 между этими портами устанавливается физическое соединение, которое постоянно контролируется физическим уровнем PHY. Однако, в активное состояние по отношению к потоку кадров по сети переводится только порт B, а порт A остается в резервном логическом состоянии. Предпочтение, отдаваемое по умолчанию порту В, определено в стандарте FDDI.

При некорректной работе физического соединения по порту B концентратор DAC4 переводит его в резервное состояние, а активным становится порт А. После этого порт В постоянно проверяет физическое состояние его линии связи, и, если оно восстановилось, то он снова становится активным.

Концентратор DAC5 также включен в есть по схеме Dual Homing, но с более полными функциональными возможностями по контролю соединения резервного порта А. Концентратор DAC5 имеет два узла MAC, поэтому не только порт В работает в активном режиме в первичном кольце, передавая кадры первичному MAC-узлу от порта М концентратора DAC3, но и порт А также находится в активном состоянии, принимая кадры от того же первичного кольца, но от порта М концентратора DAC2. Это позволяет вторичному MAC-узлу постоянно отслеживать логическое состояние резервной связи.

Необходимо заметить, что устройства, поддерживающие режим Dual Homing, могут быть реализованы несколькими различными способами, поэтому может наблюдаться несовместимость этих режимов у различных производителей.

Присоединение станции к "блуждающему" MAC-узлу

Когда новая станция включается в сеть FDDI, то сеть на время приостанавливает свою работу, проходя через процесс инициализации кольца, в течение которого между всеми станциями согласуются основные параметры кольца, самым важным из которых является номинальное время оборота токена по кольцу. Этой процедуры в некоторых случаях можно избежать. Примером такого случая является подключение новой станции SAS к порту М концентратора с так называемым "блуждающим" узлом MAC (Roving MAC), который также называют локальным MAC-узлом.

Пример такого подключения показан на рисунке 2.8.

Рис. 2.8. Присоединение станции к "блуждающему" MAC-узлу

Концентратор DM/DAC1 имеет два MAC-узла: один участвует в нормальной работе первичного кольца, а второй, локальный, присоединен к пути, соединяющему порт M со станцией SAS3. Этот путь образует изолированное кольцо и используется для локальной проверки работоспособности и параметров станции SAS3. Если он работоспособен и его параметры не требуют реинициализации основной сети, то станция SAS3 включается в работу первичного кольца "плавно" (smooth-insertion).

Подключение станций с помощью оптических обходных переключателей (Optical Bypass Switch)

Факт отключения питания станции с одиночным подключением будет сразу же замечен средствами физического уровня, обслуживающими соответствующий М-порт концентратора, и этот порт по команде уровня SMT концентратора будет обойден по внутреннему пути прохождения данных через концентратор. На дальнейшую отказоустойчивость сети этот факт никакого влияния не окажет (рисунок 2.9).

Рис. 2.9. Оптический обходной переключатель (Optical Bypass Switch)

Если же отключить питание у станции DAS или концентратора DAC, то сеть, хотя и продолжит работу, перейдя в состояние Wrap, но запас отказоустойчивости будет утерян, что нежелательно. Поэтому для устройств с двойным подключением рекомендуется использовать оптические обходные переключатели - Optical Bypass Switch, которые позволяют закоротить входные и выходные оптические волокна и обойти станцию в случае ее выключения. Оптический обходной переключатель питается от станции и состоит в простейшем случае из отражающих зеркал или подвижного оптоволокна. При отключенном питании такой переключатель обходит станцию, а при включении ее питания соединяет входы портов А и В с внутренними схемами PHY станции.

Спецификация зависящего от среды физического подуровня PMD

Структура физического соединения

Рассмотрим физический подуровень PMD (Physical Media Dependent layer), определенный в стандарте FDDI для оптоволокна - Fiber PMD.

Эта спецификация определяет аппаратные компоненты для создания физических соединений между станциями: оптические передатчики, оптические приемники, параметры кабеля, оптические разъемы. Для каждого из этих элементов указываются конструктивные и оптические параметры, позволяющие станциям устойчиво взаимодействовать на определенных расстояниях.

Физическое соединение - основной строительный блок сети FDDI. Типичная структура физического соединения представлена на рисунке 2.10.

Рис. 2.10. Физическое соединение сети FDDI

Каждое физическое соединение состоит из двух физических связей - первичной и вторичной. Эти связи являются односторонними - данные передаются от передатчика одного устройства PHY к приемнику другого устройства PHY.

Требования к мощности оптических сигналов

В стандарте Fiber PMD в явном виде не определены предельные расстояния между парой взаимодействующих устройств по одному физическому соединению.

Вместо этого в стандарте определен максимальный уровень потерь мощности оптического сигнала между двумя станциями, взаимодействующими по одной физической связи. Этот уровень равен -11 dB, где

dB = 10 log P 2 /P 1 ,

причем P 1 - это мощность сигнала на станции-передатчике, аP 2 - мощность сигнала на входе станции-приемника. Так как мощность по мере передачи сигнала по кабелю уменьшается, то затухание получается отрицательным.

В соответствии с принятыми в стандарте Fiber PMD параметрами затухания кабеля и выпускаемыми промышленностью соединителями, считается, что для обеспечения затухания -11 dB длина оптического кабеля между соседними узлами не должна превышать 2 км.

Более точно можно рассчитать корректность физического соединения между узлами, если принять во внимание точные характеристики затухания, вносимые кабелем, разъемами, спайками кабеля, а также мощность передатчика и чувствительность приемника.

Стандарт Fiber PMD определяет следующие предельные значения параметров элементов физического соединения (называемые FDDI Power Budget):

Абсолютные значения мощности оптических сигналов (для выхода передатчика и для входа приемника) измеряются в децибелах по отношению к стандартной мощности в 1 милливатт (mW) и обозначаются как dBm:

dBm = 10 log P/1,

где мощность Р также измерена в милливаттах.

Из значений таблицы видно, что максимальные потери между станциями в -11 dB соответствуют наихудшему сочетанию предельных значений мощности передатчика (- 20 dBm) и приемника (- 31 dBm).

Кабели и разъемы

Основной вид кабеля для стандарта Fiber PMD - многомодовый кабель с диаметром сердечника 62.5 мкм и диаметром отражающей оболочки 125 мкм. Спецификация Fiber PMD не определяет требования к затуханию кабеля в dB на км, а только требует соблюдения требования по общему затуханию в -11 dB между станциями, соединенными кабелем и разъемами. Полоса пропускания кабеля должна быть не хуже чем 500 МГц на км.

Кроме основного вида кабеля, спецификация Fiber PMD допускает использование многомодовых кабелей с диаметром сердечника в 50 мкм, 85 мкм и 100 мкм.

В качестве разъемов стандарт Fiber PMD определяет оптические разъемы MIC (Media Interface Connector). Разъем MIC обеспечивает подключение 2-х волокон кабеля, соединенных с вилкой MIC, к 2-м волокнам порта станции, соединенными с розеткой MIC. Стандартизованы только конструктивные параметры розетки MIC, а любые вилки MIC, подходящие к стандартным розеткам MIC, считаются пригодными к использованию.

Спецификация Fiber PMD не определяет уровень потерь в разъеме MIC. Этот уровень - дело производителя, главное, чтобы выдерживался допустимый уровень потерь -11 dB во всем физическом соединении.

Разъемы MIC должны иметь ключ, обозначающий тип порта, что должно предотвратить неверное соединение разъемов. Определено четыре различных типа ключа:

  • MIC A;
  • MIC B;
  • MIC M;
  • MIC S.

Виды ключа для этих типов разъемов приведены на рисунке 2.11.

Рис. 2.11. Ключи разъемов MIC

Кроме разъемов MIC, допускается использовать разъемы ST и SC, выпускаемые промышленностью.

В качестве источника света допускается использование светодиодов (LED) или лазерных диодов с длиной волны 1.3 мкм.

Кроме многомодового кабеля, допускается использование более качественного одномодового кабеля (Single Mode Fiber, SMF) и разъемов SMF-MIC для этого кабеля. В этом случае дальность физического соединения между соседними узлами может увеличиться до 40 км - 60 км, в зависимости от качества кабеля, разъемов и соединений. Требования, определенные в спецификации SMF-PMD, для мощности на выходе передатчика и входе приемника, те же, что и для одномодового кабеля.

Функция определения сигнала уровня PMD

Спецификация на Fiber PMD требует от этого уровня выполнения функции Signal_Detect по определению факта наличия оптических сигналов на входе физического соединения станции. Этот сигнал передается на уровень PHY, где используется функцией определения статуса линии Line State Detect (рисунок 2.12).

Уровень PMD генерирует для PHY признак присутствия оптического сигнала Signal_Detect, если мощность входного сигнала превышает -43.5 dBm, а снимает его при уменьшении этой мощности до -45 dBm и ниже. Таким образом, имеется гистерезис в 1.5 dBm для предотвращения частых изменений статуса линии при колебании входной мощности сигнала около -45 dBm.

Рис. 2.12. Функция определения сигнала на входе PMD

Технология FDDI (Fiber Distributed Data Interface) - оптоволоконный интерфейс распределенных данных -это первая технология локальных сетей, в которой сре­дой передачи данных является волоконно-оптический кабель. Работы по созданию технологий и устройств для использования волоконно-оптических каналов в ло­кальных сетях начались в 80-е годы, вскоре после начала промышленной эксплуа­тации подобных каналов в территориальных сетях. Проблемная группа ХЗТ9.5 института ANSIразработала в период с 1986по 1988гг. начальные версии стандар­та FDDI,который обеспечивает передачу кадров со скоростью 100Мбит/с по двой­ному волоконно-оптическому кольцу длиной до 100км.

Основные характеристики технологии

Технология FDDIво многом основывается на технологии Token Ring,развивая и совершенствуя ее основные идеи. Разработчики технологии FDDIставили перед собой в качестве наиболее приоритетных следующие цели:

    повысить битовую скорость передачи данных до 100Мбит/с;

    повысить отказоустойчивость сети за счет стандартных процедур восстановле­ния ее после отказов различного рода -повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

    максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) графиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети.Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI,и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участ­ки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru - «сквозным» или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рис.9.8),вновь образуя единое кольцо.Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец.Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI.Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изобра­жается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передат­чики станций по-прежнему остаются подключенными к приемникам соседних стан­ций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDIмного внимания отводится различным процедурам, кото­рые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию.Сеть FDDI может полностью восстанавливать свою работоспо­собность в случае единичных отказов ее элементов.При множественных отказах сеть распадается на несколько не связанных сетей. Технология FDDIдополняет механизмы обнаружения отказов технологии Token Ringмеханизмами реконфигу­рации пути передачи данных в сети, основанными на наличии резервных связей, обеспечиваемых вторым кольцом.

Рис.9. 8 Реконфигурация колец FDDIпри отказе

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ringи также называется методом маркерного (или токенного) кольца - token ring.

Отличия метода доступа заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной, как в сети Token Ring.Это время зависит от загрузки кольца -при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля.Эти изменения в методе досту­па касаются только асинхронного графика, который не критичен к небольшим задержкам передачи кадров. Для синхронного графика время удержания маркера по-прежнему остается фиксированной величиной.

Адреса уровня MACимеют стандартный для технологий IEEE 802формат.

На рис. 9.9приведено соответствие структуры протоколов технологии FDDI семиуровневой модели OSI. FDDIопределяет протокол физического уровня и протокол подуровня доступа к среде (MAC)канального уровня. Как и во многих других технологиях локальных сетей, в технологии FDDIиспользуется протокол подуровня управления каналом данных LLC,определенный в стандарте IEEE 802.2. Таким образом, несмотря на то что технология FDDIбыла разработана и стандар­тизована институтом ANSI,а не комитетом IEEE,она полностью вписывается в структуру стандартов 802.

Рис.9. 9 Структура протоколов технологии FDDI

Отличительной особенностью технологии FDDI является уровень управления станцией - Station Management (SMT) , Именно уровень SMT выполняет все функ­ции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI.Поэтому все узлы обмениваются специальными кадрами SMTдля управления сетью.

Отказоустойчивость сетей FDDIобеспечивается протоколами и других уров­ней: с помощью физического уровня устраняются отказы сети по физическим при­чинам, например из-за обрыва кабеля, а с помощью уровня MAC -логические отказы сети, например потеря нужного внутреннего пути передачи маркера и кад­ров данных между портами концентратора.

Локальная вычислительная сеть (ЛВС, локальная сеть; англ. Local Area Network, LAN) - компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Технологии локальных сетей реализуют, как правило, функции только двух нижних уровней модели OSI - физического и канального. Функциональности этих уровней достаточно для доставки кадров в пределах стандартных топологий, которые поддерживают LAN: звезда, общая шина, кольцо и дерево. Однако из этого не следует, что компьютеры, связанные в локальную сеть, не поддерживают протоколы уровней, расположенных выше канального. Эти протоколы также устанавливаются и работают на узлах локальной сети, но выполняемые ими функции не относятся к технологии LAN.

Технология локальных сетей определяют все компоненты, которые нужны для осуществления обмена информацией. Технологии локальных сетей состоят из топологии, средств передачи данных, алгоритма управления и методов кодирования информации. Для каждой из перечисленных составляющих имеются соответствующие стандарты. Эти стандарты издаются организацией IEEE и они известны под именем IEEE 802.

Технология Ethernet сейчас наиболее популярна в мире. В классической сети Ethernet применяется стандартный коаксиальный кабель двух видов (толстый и тонкий). Однако все большее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары, так как монтаж и обслуживание их гораздо проще. Применяются топологии типа “шина” и типа “пассивная звезда”.

Стандарт определяет четыре основных типа среды передачи.

· 10BASE5 (толстый коаксиальный кабель);

· 10BASE2 (тонкий коаксиальный кабель);

· 10BASE-T (витая пара);

· 10BASE-F (оптоволоконный кабель).

Fast Ethernet – высокоскоростная разновидность сети Ethernet, обеспечивающая скорость передачи 100 Мбит/с. Сети Fast Ethernet совместимы с сетями, выполненными по стандарту Ethernet. Основная топология сети Fast Ethernet - пассивная звезда.

Gigabit Ethernet – высокоскоростная разновидность сети Ethernet, обеспечивающая скорость передачи 1000 Мбит/с.

В связи с тем, что сети совместимы, легко и просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в единую сеть.

FDDI (англ. Fiber Distributed Data Interface - Волоконно-оптический интерфейс передачи данных) - стандарт передачи данных в локальной сети, протянутой на расстоянии до 200 километров. Стандарт основан на протоколе Token Ring. Кроме большой территории, сеть FDDI способна поддерживать несколько тысяч пользователей.

В качестве среды передачи данных в FDDI рекомендуется использовать волоконно-оптический кабель, однако можно использовать и медный кабель, в таком случае используется сокращение CDDI (Copper Distributed Data Interface). В качестве топологии используется схема двойного кольца, при этом данные в кольцах циркулируют в разных направлениях. Одно кольцо считается основным, по нему передаётся информация в обычном состоянии; второе - вспомогательным, по нему данные передаются в случае обрыва на первом кольце. Для контроля за состоянием кольца используется сетевой маркер, как и в технологии Token Ring.

Поскольку такое дублирование повышает надёжность системы, данный стандарт с успехом применяется в магистральных каналах связи.

Стандарт был разработан в середине 80-х годов Национальным Американским Институтом Стандартов (ANSI).