» Сканирующие устройства минилабов

Мы продолжаем знакомство с принципами и особенностями работы минифотолабораторий. Попробуем разобраться с тем, как происходит измерение характеристик плотности и цвета негатива и вычисление параметров экспонирования.

Чтобы увидеть и проанализировать увиденное (в нашем случае - негативное изображение на фотопленке), необходимо, как минимум, иметь "глаза и мозги". Функции этих органов в принтере минилаба выполняет сканер. Особенности способа считывания изображения и алгоритма обработки полученных данных определяют степень достоверности вычисления времени экспонирования для получения качественного отпечатка.

Что касается "глаз" сканера, то, чем более подробную информацию о негативе они сообщают компьютеру (чем больше разрешающая способность и динамический диапазон измерительной системы) - тем лучше. Однако, на самом деле, объем обрабатываемой информации ограничен возможностями аппаратных средств компьютера и алгоритма и временем обработки, которое должно быть согласовано с производительностью остальных систем принтера. Тем более что задача, которую призван решать сканер, состоит не только и не столько в компенсации описанных ранее факторов, связанных с негативом, бумагой, оптическим и химическим трактами принтера. Алгоритм сканера должен, в идеальном случае, классифицировать условия съемки объекта и вычислить коррекцию для его оптимального воспроизведения на отпечатке. Следует иметь в виду, что задача определения объекта съемки зачастую не может быть однозначно решена не только мощными программно-аппаратными средствами, но и самим оператором, так как идеальная коррекция плотности для одного участка изображения может привести к потере деталей на другом участке. Например, “выбитое” вспышкой лицо на переднем плане имеет на негативе плотность гораздо выше, чем объекты заднего плана, которые могут представлять не меньший интерес для снимавшего. В этом случае более приемлемым решением может оказаться компромисс, при котором объект переднего плана печатается несколько более плотным, чтобы воспроизвести детали заднего плана. Задачу воспроизведения деталей одновременно с участков негатива повышенной и пониженной плотности решает адаптивное маскирование, примененное в принтере новейшего поколения Agfa MSP DIMAX . В оптический тракт введена жидкокристаллическая матрица, на которой автоматически формируется маскирующее изображение, компенсирующее высокий контраст исходного негатива.

Попытаемся разобраться, как сканеры различных моделей принтеров (Noritsu QSS1401/1501/1201(2)/1701(2) , Gretag MasterOne/MasterLab(+) , Agfa MSC ) справляются со столь сложной задачей, и в какой степени их функционирование может быть оптимизировано настройкой.

Глазами сканера Noritsu является ПЗС матрица 128x128 элементов, на которую через линзу,соответствующую формату пленки, проецируется кадр. Изображение считывается трижды за фильтрами R,G,B. Линзы и фильтры расположены на соосных турелях. После предварительного усиления информация в виде аналогового видеосигнала поступает на процессорную плату сканера, где оцифровывается и анализируется. Несмотря на достаточно большое разрешение ПЗС матрицы и солидную вычислительную мощность процессора этот сканер часто ошибается при вычислении экспозиции. Это обусловлено как несовершенством алгоритма, так и свойствами измерительной системы: характеристики фильтров не адаптированы к спектральной чувствительности фотобумаги и нестабильны во времени (фильтры быстро выгорают). Динамический диапазон измерительной системы недостаточно адаптирован ко всему диапазону плотностей изображения на пленке. Настройка принтера при работе со сканером заключается в калибровке усиления сигнала (потенциометрами на плате предварительных усилителей), определении области ПЗС матрицы, на которую проецируется кадр (для каждого формата пленки), и запоминанию величин для неэкспонированного кадра пленки. Практика показывает, что, для снижения процента брака, операторы Noritsu предпочитают работать в полуавтоматическом режиме, когда сканер корректирует только цветовые сдвиги, а оператор вводит поправки по плотности. Функция цветовой коррекции ухудшается по мере выгорания фильтров, и зачастую роль сканера сводится к позиционированию кадра.

Сканер упомянутых моделей Gretag работает гораздо эффективнее при определении коррекции как по плотности, так и по цвету. Его измерительная система представляет собой линейку фотодиодов, которая сканирует кадр в 12 позициях за каждым из фильтров R,G,B (для полного кадра формата 135 сканируется массив данных 8x12 точек для каждого из цветов) (рис.1 ). Такое небольшое разрешение накладывает определенные ограничения на эффективность распознавания мелких объектов, однако алгоритм обработки неплохо справляется с классификацией типичных сюжетов. Линейка фотодиодов является единственным органом зрения принтера (принтеры Noritsu , помимо матрицы сканера, имеют три фоточувствительных датчика R,G,B, осуществляющих интегральное измерение плотности кадра). Поэтому работа без сканера возможна лишь в режиме фиксированной экспозиции. Сигналы с фотодиодов, после адаптивного усиления, оцифровываются 12-разрядным АЦП, что обеспечивает достаточный динамический диапазон измерительной системы. Алгоритм классифицирует изображение, пытаясь отнести его к одной из групп по условиям съемки (Flash-1, Flash-2, Back Light, Green, Snow). Для каждой группы оценивается вероятность отнесения к ней сюжета, и полученные величины участвуют в процессе вычисления времени экспонирования наряду с параметрами в памяти принтера, определяющими степень коррекции для каждой из групп. К группе Flash-1 относятся сюжеты с ярко выраженным объектом высокой плотности в центре кадра (предполагается, что объект переднего плана снят со вспышкой и требуется плюсовая коррекция плотности для его нормального воспроизведения). Типичный пример - лицо на переднем плане, снятое со вспышкой. Если один или несколько плотных участков негатива смещены от центра, сканер анализирует их цветовой баланс и в случае близости с балансом человеческой кожи принимает их за объект съемки, относя сюжет к группе Flash-2, и, также как в предыдущем случае, осуществляет плюсовую коррекцию плотности. Сканер относит сюжет к группе Back Light (яркий фон), если обнаруживает достаточно большой участок негатива повышенной плотности, ограниченный краями кадра. Такой участок классифицируется как яркий фон и применяется минусовая коррекция плотности. Типичный пример - яркое небо на заднем плане. Сюжеты с объектами на фоне ярко освещенной зелени классифицируются как группа Green и требуют минусовой коррекции. Следует отметить, что, хотя сканер принимает во внимание цветовой баланс при отнесении сюжетов к группам Flash-2 и Green, соответствующая коррекция производится только по плотности. К группе Snow сканер относит низкоконтрастные объекты на однородном светлом фоне (снежный пейзаж, небо). Такие сюжеты требуют минусовой коррекции. Специальные кнопки на клавиатуре позволяют "подсказать" сканеру, с каким случаем он имеет дело.

При вычислении цветовой коррекции используются установленные в памяти пределы цветового сдвига по каждой из цветовых осей (Y-B, M-G, C-R плюс дополнительные оси для цвета ламп накаливания и люминесцентных ламп), при превышении которых коррекция не применяется (предполагается наличие естественной цветовой доминанты). Степень коррекции определяется заданной в памяти величиной максимума (Color Correction Factor) и величиной отклонения от “серого центра”. Она максимальна при малых отклонениях и линейно уменьшается до нуля с приближением к установленным пределам. Баланс “серого центра” индивидуален для каждой пленки. В памяти хранятся величины средней плотности нормального негатива и маски для каждого настроенного пленочного канала в соответствии с DX-кодом. По этим величинам ведется статистика, и заданные величины могут со временем уточняться с использованием статистических данных. При вычислении отклонения по плотности и цвету каждого кадра измеренная интегральная плотность сравнивается с плотностью нормального негатива с учетом отклонения маски.

Сканер показывает приемлемые результаты при работе в автоматическом режиме. Ошибки по плотности составляют в среднем 5-10%. Приведем типичные случаи ошибок. При смещении от центра до соприкосновения с границей кадра объекта переднего плана, снятого со вспышкой, сканер может отнести сюжет к группе Back Light, вместо Flash-1, и применить коррекцию с обратным знаком. Человеческие лица на групповой фотографии могут оказаться слишком мелкими объектами для сканера. Он не применит поправку, предусмотренную для сюжета Flаsh-2, и они окажутся на отпечатке слишком светлыми. Сюжет, содержащий белые объекты,снятые при вечернем или желто-красном искусственном освещении (корабль, здание), может быть отнесен сканером к группе Flash-2. В этом случае принтер напечатает слишком плотный отпечаток, приведя белые объекты к нормальной плотности человеческого лица. Часто сканер пытается привести к средней плотности светлую рубашку, принимая ее за основной объект переднего плана (Flash-1). Ясно, что портрет при этом оказывается слишком темным. Существенные цветовые сдвиги, обусловленные нарушением процесса обработки и хранения пленки, почти не корректируются. Не удается избежать некоторого искажения цветов при наличии в сюжете небольших цветовых доминант. При ручной печати опытный оператор может предвидеть некоторые из упомянутых ситуаций и попытаться их исправить. Оптимизация работы алгоритма сканера является процессом нахождения компромисса путем подстройки в памяти одноименных параметров, отвечающих за степень коррекции каждой из сюжетных групп. Также компромиссом между качеством печати сюжетов с цветовыми доминантами и коррекцией нежелательных цветовых сдвигов является настройка величин пределов коррекции и CCF.

Наилучшие результаты при автоматической печати показывает TFS-сканер семейства принтеров Agfa MSC . Технология “Total Film Scanning” позволяет печатать всю продукцию в общем для всех пленок канале с минимальным участием оператора (только загрузка пленки). Вполне удовлетворительно корректируются даже пленки с серьезными отклонениями, обусловленными нарушением процесса обработки и хранения. Процедура настройки принтера предельно проста. Попробуем разобраться, какими средствами достигается эта простота. “Глаза” сканера представляют собой три линейки из 16 фоточувствительных элементов, каждая из которых экспонируется одной из основных спектральных составляющих света, а также дополнительная линейка для анализа плотности негатива (рис.2 ). Блок фильтров сканера имеет характеристики, адаптированные к спектральной чувствительности эмульсии используемого типа фотобумаги, и выполнен в виде сменной обоймы. Это позволяет сканеру видеть негатив “глазами” фотобумаги. Подвижные части отсутствуют - сканирование происходит по мере подачи пленки. При сканировании полного кадра пленки формата 135 компьютер получает массив данных в 16x31 точках для каждого из трех основных цветов. При загрузке пленки она полностью сканируется. Данные, полученные по всей пленке, анализируются алгоритмом сканера, и выявленные особенности принимаются в расчет, наряду с информацией о каждом кадре. Полученной информации оказывается достаточно, чтобы алгоритм правильно вычислил не только коррекцию, связанную с особенностями пленок разных типов и производителей, но и скомпенсировал цветовые сдвиги пленок с различными отклонениями от нормы. Классификация индивидуальных кадров по сюжетным группам осуществляется подобно тому, как это происходит в сканере Gretag , но с более надежным результатом, что обусловлено как более высоким разрешением, так и информацией о других кадрах пленки. Заслуживает внимание работа алгоритма с сюжетами, содержащими цветовую доминанту. При расчете цветовой коррекции индивидуального кадра алгоритм игнорирует участки с повышенным цветовым сдвигом, что позволяет получить неискаженную цветопередачу объекта в сюжете с цветовой доминантой.

Настройка параметров сканера DL1, DL2, DL3, хранящихся в памяти принтера, позволяет оптимизировать распознавание и коррекцию сканером специфических условий съемки. Например, если замечено, что отпечатки с контрастных негативов, содержащих объект на переднем плане, снятый со вспышкой, получаются недоэкспонированными, следует слегка увеличить параметр DL1. Параметр DL2 отвечает за распознавание и коррекцию контрастных сюжетов с ярким фоном. Как и в случае с Gretag оптимизация этих параметров является поиском некоторого компромисса. Коррекция же негативов с низким контрастом, а также сюжетов на фоне больших водных поверхностей, снежных пейзажей и т.д., производится регулировкой параметра DL3.

При правильной настройке указанных параметров и регулировке порога распознавания цветовых доминант работа оператора в режиме автоматической печати становится чрезвычайно простой и удобной, даже если на пленке имеются кадры со значительными отклонениями от нормальных условий экспонирования.

Завершая сравнительный обзор принципов работы сканеров в МЛ и их возможности по коррекции плотности и цвета фотоотпечатков, хотелось бы отметить, что даже самый лучший сканер, снабженный хорошим алгоритмом, не в состоянии скомпенсировать серьезные отклонения технологических параметров процессов обработки пленки и бумаги от нормальных. Другими словами, всегда нужно помнить, что корректирующая работа сканера наиболее эффективна при условии нормальной, с химической точки зрения, работы как фильмпроцессора, так и бумажного процессора.

Игорь ГОРЮНОВ, Павел ЗАХАРОВ

Ссылки на связанные темы:

Описания минифотолабораторий
Периодически обновляемый раздел сайта, посвященный описаниям, в первую очередь, новых, а так же, по мере возможности, старым моделям минифотолабораторий.

Тихон Баранов

Настольные сканеры появились в 80-х годах и сразу стали объектом повышенного внимания, но сложность использования, отсутствие универсального программного обеспечения, а самое главное, высокая цена не позволяли сканерам выйти за пределы специализированного использования.

С тех пор прошло не так много времени, но уже выделилось целое направление настольных сканеров, предназначенных в основном для офисного и домашнего использования. Причем, за последние несколько лет, благодаря невероятному снижению цен популярность сканеров выросла значительным образом. Цена хорошего планшетного сканера сегодня соизмерима с ценой хорошей видеокарты или принтера, поэтому логично продолжить покупку компьютера и принтера приобретением сканера.

Последние два года планшетные сканеры настолько упали в цене, и настолько вырос ассортимент предлагаемых моделей, что выбор этого устройства для конкретных задач стал более чем актуальным.

В предлагаемом материале хочется рассказать о строении планшетного сканера, разобрать особенности процесса сканирования и дать некоторые рекомендации в приобретении планшетного сканера.

Настольный сканер незаменим при работе с компьютером, если у Вас есть потребность делать вставки графических изображений или текстов с бумажных носителей в документы, создаваемые при помощи компьютера. Современные настольные сканеры достаточно просты в использовании, имеют интуитивно-понятный интерфейс, но существует ряд характеристик и особенностей, на которые следует обращать внимание при выборе сканера - оптическая система, программная часть TWAIN-модуль и интерфейс. Разберем все три части по отдельности.

Оптика и механика

Данная часть состоит из сканирующей каретки с источником света, фокусирующего объектива или линзы, прибора с зарядовой связью и аналого-цифрового преобразователя (АЦП).

Собственно весь процесс сканирования с участием всего перечисленного выглядит следующим образом. На прозрачное стекло под крышку сканера кладется изображение (текст, графика, фотография), подлежащее сканированию, "лицом" вниз. Дальше начинает движение каретка, совершающая путь, равный длине стекла. Расположенная на ней лампа с холодным катодом освещает изображение. При помощи фокусирующего объектива световой поток от изображения проецируется на прибор с зарядовой связью, где преобразуется в аналоговую информацию. Последняя в АЦП становится цифровой, т.е. битовой, и тем самым понятной компьютеру. Похожее аналого-цифровое (и наоборот) преобразование проделывает модем, поскольку информация по телефонным линиям передается в аналоговой форме.

Точная цветопередача при сканировании цветных изображений происходит путем разделения сканируемого цвета по трем основным составляющим - цветам: красному, зеленому и синему.

Здесь пару слов хочется сказать про понятие "глубина цвета", поскольку если информация о цвете хранится в битах, то глубина цвета - это определенное число бит. Стандартной ("истинной") можно считать глубину цвета в 24 бита на каждую точку, когда на цвета RGB приходится по 8 бит. Соответственно, при такой разрядности сканер воспринимает 16,77 млн. цветовых оттенков одной точки. Помимо 24-битных сканеров на сегодняшний день широко распространены 30-, 36-, 42- и даже 48-битные сканеры. Но что интересно: человеческий глаз "не рассчитан" на глубину цвета более 24 бит. Увеличение разрядности сканеров вызвано не желанием производителей подзаработать на истерии вокруг технологических гонок, причина в другом: аналого-цифровое преобразование приводит к появлению искажений в младших, наиболее "ранимых", битах, - 30-битные (и выше) системы не пропускают пустую информацию в компьютер, "вытягивая" на выходе глубину цвета до полноценных 24 бит.

Раньше для цветного сканирования приходилось использовать трехпроходную технологию. То есть первый проход с красным фильтром для получения красной составляющей, второй - для зеленой составляющей и третий=- для синей. Такой метод имеет два существенных недостатка: малая скорость работы и проблема объединения трех отдельных сканов в один, с вытекающим отсюда не совмещением цветов.

Решением стало создание True Color CCD, позволяющих воспринимать все три цветовые составляющие цветного изображения за один проход. True Color CCD является стандартом на данный момент и в мире уже никто не выпускает трехпроходные сканеры. Аналогично в свое время прекратили существование черно-белые планшетные сканеры.

Рядовой пользователь может запутаться в разнообразии различных разрешений, которые нам предлагает производитель. Данное понятие можно разделить на две группы:

  1. Оптическое разрешение

    Определяется количеством ячеек в линии матрицы, поделенным на ширину поля сканирования. Обычно разрешение сканера обозначается двумя цифрами: 300х600 ppi, 600х1200 ppi и т.п. Хочется, чтобы читатель обратил внимание, что обозначение ppi (pixels per inch - пикселов на дюйм) более точно по отношению к разрешению сканирования, по отношению к распечатанному на принтере изображению - dpi (dots per inch - точек на дюйм).

  2. Интерполированное разрешение

    Выбирается пользователем и может в несколько раз превышать реальное разрешение сканера. Например, программное разрешение 600 ppi сканера HP ScanJet 5100C можно довести до 1200 ppi. Однако больше - не значит в данном случае лучше. Качественное сканирование получается при разрешении равном оптическому, либо меньшим, но ему кратным. Эту характеристику очень любят производители настольных сканеров, часто включая в название и нанося большими буквами на красочной коробке. Вы можете увидеть 4800, 9600 и т.д.

    При покупке сканера следует понимать, что общий подход в компьютерной технике "чем больше, тем лучше" (память, частота процессора и т.д.) в общем случае не относится к сканерам. То есть, конечно, лучше и конечно дороже, но Вам это может, никогда не пригодится! Разрешение, которое необходимо использовать при сканировании, определяется устройством вывода, которое вы используете.

    При сканировании изображений необходимо отталкиваться от оптического разрешения сканера. Т.е. если для сканера указано разрешение 300х600 ррi, сканируйте в режиме 300х300 ppi или 150х150 ppi. Файлы с интерполированным разрешением (в данном случае это может быть 600, 1200, 2400 и более ppi) не только велики по объему, но и содержат множество нереальных, программно "придуманных" пикселов, что сказывается на качестве получаемой картинки.

    Для вывода на экран один к одному (презентации, Web дизайн) достаточно задать 72 точки на дюйм или 100 точек на дюйм, так как все мониторы выдают либо 72, либо 96 точек на дюйм.

    При использовании струйного принтера при выводе цветных изображений достаточно задать разрешение сканера = разрешению принтера/3, так как производители принтеров указывают максимальное разрешение принтеров, при печати в цвете струйные принтеры используют три точки для создания одной точки, получаемой со сканера. То есть и здесь Вам хватит 200 - 250 точек на дюйм.

    Тогда в каких случаях нужно большое разрешение? Ответ прост: если требуется увеличивать или растягивать изображение, снятое с оригинала. Подумайте: может быть у Вас никогда и не возникнет такой потребности, а переплачивать придется достаточно много.

    Одной из основных характеристик сканера является динамический диапазон. Немножко поясним эту характеристику. Любое изображение имеет оптическую плотность: от 0.0 D (абсолютно белое, прозрачное) до 4,0 (абсолютно черное, непрозрачное). Динамиче-ский диапазон сканера определяется его способностью воспринимать оптическую плотность сканируемого изображения. Если сканер имеет динамический диапазон равный 2,5 D, то он сможет справиться с фотографиями, но будет "пас" при работе с негативами, имеющими оптическую плотность более 3,0 D. Это значит, что сканер не воспримет наиболее темные участки изображения и произведет неполноценное сканирование. Чтобы было понятно, приведу, как пример, советскую цветную фотопленку. Кто имел с ней дело, сравнение поймет отлично. Советская фотопленка выпускалась с низкой глубиной цвета и потому имела большие проблемы с отображением светлых и темных тонов.

    Дешевые планшетные сканеры имеют динамический диапазон 2.0 - 2.7D, хорошие 3.0=- 3.3D, новейшие модели 3.6D.

    Один из важнейших параметров матрицы - уровень производимого ею шума. Высокий уровень "шумности" крайне отрицательно влияет на качество сканирования, сокращая динамический диапазон и число разрядов с действительно полезными данными. Допускаемый уровень шума CCD-матриц сканеров SOHO-сектора - 3-4mV.

    В данной статье автор пытается дать некоторый обзор сканеров с традиционной CCD - технологией. Справедливости ради надо сказать, что на рынке присутствует альтернатива - CIS-технология. Последняя известна достаточно давно, но сканеры с использованием этой технологии появились относительно недавно. В таких сканерах полностью отсутствуют оптика и зеркала, приемный элемент равен по ширине рабочему полю сканирования и представляет собой линейку из нескольких одинаковых матриц. Помимо иных относительно незначительных недостатков этому варианту присущи два принципиальных: слабая фокусировка (оптики-то нет-) и небольшие зазоры между соседними матрицами. Сканированию текста это не мешает, но для работы с полноцветной графикой лучше выбрать сканер, построенный на основе традиционной CCD-технологии.

TWAIN-модуль

Парадоксально, но факт: сканер не является стандартным устройством для Windows. (Можно было бы оспорить данное утверждение, ведь в Windows`98 драйверы для сканеров установлены. Однако мне еще не попадался такой сканер, который бы работал с драйверами "девяностовосьмерки". Может быть, потому, что драйверы написаны для USB, а сканеров с таким интерфейсом на рынке еще мало.) Для взаимодействия графических приложений компьютера и оптико-электронной системы сканера необходима специальная программа, в роли которой выступает TWAIN-модуль. Ничего особо сложного он не представляет, но надо принять во внимание то обстоятельство, что разные версии TWAIN-модуля одного производителя могут вести себя неадекватно по отношению к разным версиям Windows, вплоть до полной их несовместимости. Это легко можно понять, если учесть сходность TWAIN-модуля с обыкновенным драйвером, подлежащим обновлению, например с выходом нового "детища" Билла Гейтса. Собственно, благодаря TWAIN-модулю пользователь способен управлять на экране монитора процессом сканирования. Модули эти как "произведения искусства" конкретных производителей сканеров отличаются различным набором своих функциональных возможностей. В модулях недорогих цветных планшетников, скорее всего, пользователь найдет такие функции, как: окно предварительного просмотра, автоматическое определение области сканирования, возможность выбора разрешения и режима сканирования, регулирование контрастности, яркости и гаммы, фильтр подавления печатного растра и др. Помимо названных, существует масса других, более специфических, функций - их можно встретить в модулях профессиональных сканеров, называть их здесь мы не будем.

Аппаратный интерфейс

Интерфейс влияет на скорость процесса сканирования будучи ответственным за быстроту обмена данными между компьютером и сканером. Сейчас к LPT- и SCSI-сканерам прибавились модели, оснащенные перспективным и шустрым интерфейсом USB. К примеру, существуют три разновидности модели Astra 1220 (производства UMAX): Astra 1220P, подключаемая к порту принтера, Astra 1220U, использующая интерфейс USB, и Astra 1220S=- SCSI-устройство. Наиболее скоростной из них является модель с интерфейсом SCSI, с USB - помедленнее, а с LPT - самая "тихоходная". Вообще соотношение SCSI/USB/LPT считается равным 3/2/1. В то же время следует заметить, что в отдельных случаях скоростные показатели сканеров с тем или иным интерфейсом могут значительно отличаться от ожидаемых. Однако такие моменты лишь подтверждают правило, поэтому разница в цене, существующая между LPT-, USB- и SCSI-сканерами, вполне оправдана.

Тем не менее существует ряд условий, выполнение которых может несколько ускорить работу интерфейсных устройств Вашего сканера.

  • Если Ваш аппарат подключается к параллельному порту компьютера, стоит обратить внимание на режим, в котором работает контроллер порта. Традиционно рекомендуется устанавливать ЕРР\ЕСР, однако большинство современных BIOS поддерживает различные варианты этого режима: EPP v.1.7, EРP\EСP v.1.9, и так далее. В общем случае определить оптимальный вариант можно только экспериментально.
  • Большинство SCSI-сканеров класса SOHO комплектуется сейчас контроллерами типа DTC3181 либо аналогичными. Эти контроллеры не имеют собственного BIOS, единственный доступный пользователям элемент управления - перемычки (jumpers) J1, J2, задающие поддержку Plug"n"Play и величину wait state (WS) соответственно; второй параметр по умолчанию имеет значение "1". Распространено заблуждение, согласно которому установка WS=0 приводит к "ускорению" сканирования. К сожалению, это не так: в лучшем случае скорость сканирования не изменится, в худшем - Вы получите сообщение типа "Scanner not ready"...

    Известны случаи, когда к существенному замедлению работы сканера приводил конфликт двух SCSI-контроллеров. Если такую проблему не удается решить переназначением ресурсов конфликтующим устройствам, рассмотрите вариант установки сканера в составе SCSI-цепочки на более мощный контроллер. При этом сканер должен быть последним устройством цепочки, его следует терминировать, а SCSI ID выставить в положение, соответствующее требованиям используемого контроллера (допустимые положения: 1...6). Имеющийся опыт использования сканеров Mustek с быстродействующими контроллерами Adaptec 2940 AU и Asus SC-200 PCI показывает, что подключенный таким образом сканер работает быстрее, чем с "родной" SCSI-II картой DTC3181.

    Выбор сканера

    Перво-наперво хочется, чтобы покупатель имел в виду, что сканер всегда покупается для конкретных работ, и не пытайтесь здесь крутить пальцами перед своими друзьями, показывая им модель, которую вы приобрели, ну с очень крутыми характеристиками - опытный, знающий пользователь может над вами посмеяться. Если вы не представляете, какие работы будете выполнять, то вам, скорее всего, необходим сканер для дома, и ниже мы подберем сканер и для вас.

    Работы по сканированию текста

    Для этих работ подойдут любые сканеры, так как черно-белый текст способны хорошо отсканировать практически любые из представленных на рынке сканеров - смело выбирайте самый дешевый вариант одного из известных производителей.

    Домашние работы

    Если вы не ставите перед собой глобальных, крупномасштабных задач и у вас рядом не стоит какой-нибудь "супер-пупер-лазерный цветной" принтер, с "офигительными" характеристиками, с помощью которого вы тихой сапой намереваетесь заняться тем, чем у нас занимается фабрика "Гознак", то вам подойдет серия Scan Express фирмы Mustek, при минимальной цене она даст вам вполне приемлемое качество. Для просмотра изображений на мониторе вам достаточно разрешения сканера 100 точек на дюйм, для распечатывания на принтере с небольшим увеличением, хватит 600 точек на дюйм. Если же вы собираетесь создать огромный домашний фотоархив, то вам стоит обратить внимание на более мощные модели - серия Mustek Paragon, рассчитанная на большие объемы работ, и сканеры Umax Astra с улучшенной цветопередачей, для тех, кто не понаслышке знаком с PhotoShop и может на простом уровне откалибровать свой монитор.

    Если вы не знакомы с внутренним устройством компьютера - выбирайте сканеры с подключением к параллельному порту - они немного медленнее, но проще устанавливаются. Если вам посчастливилось, и вы = обладатель компьютера последнего года выпуска с USB-шиной, то сканер на USB v порт для вас окажется более предпочтительным - он быстрее, чем сканер на LPT. Для тех, кто не боится самостоятельно установить SCSI-карточку, сканеры со SCSI-интерфейсом подойдут лучше всего.

    Офисные работы

    Сканеры для офиса должны быть рассчитаны на большой объем работ и лучше передавать цвета, так как в офисах стоят, как правило, более качественные цветные принтеры. Сканер должен позволять подключать слайд-адаптер, желательно также подключение автоподатчика документов. Для таких работ подходит серия Paragon Mustek, как сканеры начального уровня. Для создания и распечатки собственных красочных листовок и презентаций необходимы сканеры с лучшей цветопередачей - Umax Astra и Agfa Snap-Scan (Сканеры AGFA предоставляют более широкие возможности подготовленному оператору). Наиболее мощный сканер из этого класса - Umax Astra 2400S Plus, рассчитанный на большие объемы работ.

    Довольно большую популярность как во всем мире, так и у нас на рынке приобрели сканеры фирмы Hewlett-Packard. Они в большинстве своем стоят в различных офисах нашей страны, имея под собой довольно неплохие межгородские сервисы и мастерские по ремонту и обслуживанию. Наиболее популярными моделями для офисной работы можно считать ScanJet 5200C и ScanJet 6200C

    Сканеры для рекламных агентств

    Основные задачи для этих сканеров - качественное сканирование небольших объемов слайдов и бумажных оригиналов. Сканер должен обладать высоким разрешением (Для сканирования слайдов с выводом их на печать, форматом распечатанного изображения 10х15 см (формат стандартной фотографии) вам необходимо будет разрешение 1200 точек на дюйм, а для распечатывания слайда на формат А4 - уже 2400 точек на дюйм.), а также хорошим динамическим диапазоном. (Для сканирования фотографий необходим диапазон 2.3D, для слайдов необходим диапазон оптических плотностей больший, чем 2.8-3.0 D, а для негативов больший, чем 3.3 D.) Наиболее дешевые сканеры в этом классе - Agfa Duoscan T1200 с отличным качеством, но невысоким разрешением 600х1200 точек на дюйм, и Mustek Paragon Power Pro с хорошим разрешением 1200х2400 точек на дюйм, но с невысоким динамическим диапазоном, - для фирм, которые не могут позволить себе значительные финансовые затраты. Для более требовательных пользователей подойдут сканеры AGFA Duoscan и Umax PowerLook III, HP ScanJet 6350C с хорошей цветопередачей и динамическим диапазоном (3.4D) и с высоким разрешением (1000х2000 и 1200х2400 соответственно).

    Сканирование большого количества слайдов

    Для сканирования больших объемов слайдов необходимы сканеры с теми же характеристиками, что и у предыдущей группы, но большего формата - А3. На стекле такого сканера располагаются сразу несколько слайдов, которые сканируются в пакетном режиме. Если вам не нужно большое разрешение сканера, то идеальным выбором для вас в этой группе будет сканер Mirage IIse. Сканер AGFA Duoscan T2000XL с большим разрешением 2000х2000 точек на дюйм подойдет вам в случае если необходимо увеличивать сканированные слайды на формат близкий к А4. Довольно неплохое предложение на рынке имеет для этого типа работ и компания Hewlett-Packard, которая представляет на рынке свою модель - Photo Scanner S20, которая по мнению автора неплохо оптимизирована под работу с 35 мм негативами.

    Сканирование слайдов большого формата

    Сканирование рентгеновских снимков, материалов дефектоскопии и аэросъемки. Здесь представлены сканеры с невысоким разрешением, но с хорошим качеством цветопередачи и с высоким динамическим диапазоном. Это Mustek Paragon A3 Pro c разрешением 600х1200 и Umax Mirage IIse с разрешением 700х1400 точек на дюйм.

    Сканеры для Полиграфии

    Для этих задач сканеры должны обладать высочайшими характеристиками, и выбор сканера должен определяться в большей степени ценой, которую вы готовы потратить на него. Наиболее простой сканер в данной категории - AGFA Duoscan T2500 c разрешением 2500 точек на дюйм. Более мощная модель Umax PowerLook 3000 с разрешением 3048х3048. И две модели AGFA А3 формата - AgfaScan 5000 с разрешением 2500х5000 и AgfaScan XY-15 с разрешением 5000х5000 на полном А3+ формате.

    Напоследок хочется дать некоторые советы, при покупке данного устройства:

  • Не стоит забывать, что с любым сканером все прикладные программы взаимодействуют посредством "драйвера", и что это единственный интерфейс, которым возможно задавать параметры для сканирования изображения. Функциональность и возможности драйвера во многом определяют возможности, получаемые пользователем от сканера. Поэтому важно, чтобы фирма-производитель с достаточной серьезностью относилась к разработке "драйверов" для своих сканеров, а о возможностях драйверов лучше узнать еще до покупки сканера у поставщика либо на сайте производителя, возможно, нелишним окажется послушать "бывалых" полиграфистов. Часто забывают, что без "родного" драйвера (если он не работает под нужной ОС сейчас или не удастся найти новую версию драйвера через год, с выходом Windows 2000) сканер не может работать вообще.
  • Заявления продавца о том, что в его сканере есть нечто, чего нет у других (стеклянная оптика, особенно хорошее "цейссовское" верхнее стекло, встроенное в сканер выделение букв и подавление помех и прочие правдивые или бредовые вещи), вполне может иметь под собой почву, но используйте здравый смысл и задайте себе два простых вопроса:
  • Если все настолько хорошо, почему в мире еще продаются другие сканеры?
  • Если это действительно такое важное преимущество, почему производитель не пишет об этом огромными буквами на коробке сканера, в рекламе и Интернете?

    И еще: при транспортировке сканера не забывайте ставить специальную заглушку, в режим закрыто, а то иначе так и будете ездить между сервис-центром и домом.

    Вот, кажется, на первый раз и все. Да, и последнее: один мой знакомый накопил дома кучу разного компьютерного железа - видеокарт, процессоров, звуковых карточек, - продал он это и купил себе сканерочек. Уважаемый читатель, загляните к себе в кладовку, может там лежит ваш еще не купленный сканер. Так что думайте, решайте, ищите! Выбор за вами.


  • Не удивляйтесь, если вы не обнаружили этих слов в характеристиках вашего сканера - производители не всегда указывают этот показатель. Но это вовсе не означает, что данная характерисктика не играет существенной роли в качестве получаемого изображения. Наоборот, многие специалисты сходятся во мнении, что это основной показатель качества сканера.

    Что такое динамический диапазон?

    Более точно этот параметр называется диапазоном оптических плотностей.

    Оптическая плотность - это показатель, позволяющий численно измерить, насколько темным является оригинал. Для прозрачного оригинала оптическая плотность - это десятичный логарифм отношения общего потока света к потоку света, прошедшего через оригинал; для непрозрачных - отношения всего потока к отраженному свету.

    Таким образом, чем темнее оригинал, тем больше его оптическая плотность. Например, значение оптической плотности 0,01 соответствует практически белому свету, а значения 4,0 и выше - почти черному, практически неразличимому глазом.

    На любом слайде есть как светлые, так и темные области - целый набор различных оптических плотностей. Диапазон между самой маленькой и самой большой оптической плотностью на данном оригинале называется его динамическим диапазоном .

    Динамический диапазон сканера

    Динамический диапазон есть не только у оригинала, но и у сканера. Динамический диапазон сканера – это разность оптических плотностей, которую сканер может распознать.

    Белый цвет все сканеры распознают достаточно хорошо. Другими словами, с минимальной оптической плотностью у них проблем нет. У большинства сканеров она равна 0,01 или даже меньше. Проблемы возникают при сканировании темных областей, где света очень мало. Здесь все зависит от чувствительности считывающего фотоэлемента: чем чувствительнее CCD линейка, тем лучше сканер распознает темные области.

    Что значит «распознает»?

    Под этим словом подразумевается сразу два действия. Во-первых, сканер должен отличить темный оттенок от максимально черного. Иначе многие темные области на сканированном изображении будут выглядеть просто черным пятном без каких-либо деталей. Во вторых, сканер должен сканировать темную область без шумов - этакого цветного мусора в виде разноцветных точек. Ведь чем темнее оригинал, тем слабее сигнал на фотоэлементе, и тем больший вклад в изображение будет вносить шум самого фотоэлемента и других электронных компонентов сканера.

    Способность сканера отличать темные области от черных и степень зашумленности темных областей обычно связаны между собой. Они определяются качеством фотоэлемента и глубиной цвета сканера: чем более темные области распознает сканер, тем меньше шума вносит фотоэлемент.

    Поэтому эти два параметра обычно объединяют одной характеристикой - динамическим диапазоном, который показывает, насколько качественный фотоэлемент установлен в сканере, и следовательно, насколько темные области он распознает и какой уровень шумов в тенях дает при сканировании. Разумеется, чем больше значение динамического диапазона, тем лучше.

    Кроме того, динамический диапазон зависит от глубины цвета сканера, то есть от количества градаций серого (яркости), который он может передать. Это естественно: чем меньше градаций яркости передает сканер, тем меньше разница между самым светлым и самым темным оттенками, которые он распознает.

    Связаны эти параметры очень просто. Допустим, глубина цвета сканера составляет 36 бит, или 12 бит на цвет. Это значит, что он распознает 4096 градаций серого. Десятичный логарифм от 4096 дает 3,6 - это и есть максимальный динамический диапазон данного сканера. На самом деле он меньше, поскольку чувствительность фотоэлемента не идеальна. Насколько - зависит от качества фотоэлемента. Однако можно точно сказать, что динамический диапазон данного сканера не может превышать 3,6.

    По динамическому диапазону можно точно классифицировать сканеры (табл. 1).

    Динамический диапазон оригинала

    Очевидно, что значение динамического диапазона сканера должно превосходить значение динамического диапазона оригинала. Иначе при сканировании часть информации с оригинала будет утрачена: если изображение и не будет сплошь черным, то темные оттенки пропадут. Например, вместо тени на лице будет просто черное пятно. Либо же сканер поднимет яркость изображения и хорошо распознает темные области, зато вместо светлых областей получатся пятна, на этот раз - белые.

    Данные для наиболее распространенных непрозрачных оригиналов приведены в таблице 2.

    Таким образом, диапазон сканера, предназначенного для сканирования исключительно непрозрачных оригиналов, должен быть не меньше 2,3–2,5. С другой стороны, он не должен слишком уж превышать эти цифры, так как с увеличением динамического диапазона цена сканера возрастает в геометрической прогрессии.

    С прозрачными оригиналами дело обстоит несколько сложнее. Во-первых, фотоматериалы бывают профессиональными и любительскими. У последних диапазон плотностей несколько меньше.

    Во-вторых, в отличие от непрозрачных оригиналов, которые, как правило, печатаются на белой бумаге (то есть отсчет динамического диапазона ведется от белого цвета с низкой плотностью), в негативах самый светлый оттенок все равно имеет значительную плотность.

    Это значит, что при сканировании негативов и слайдов надо учитывать не только динамический диапазон, но и максимальную оптическую плотность. Например, слайд с динамическим диапазоном 3,0 может иметь плотности от 0,7 до 3,7. А ведь динамический диапазон сканера отсчитывается практически от белого цвета - от низких плотностей. Таким образом, если диапазон сканера составляет 3,5, то максимальная плотность, которую он может распознать, - это 3,55 (максимум - 3,6). Такой сканер не сможет корректно отсканировать описанный выше слайд, хотя его динамический диапазон выше, чем у оригинала.

    Поэтому для прозрачных оригиналов лучше учитывать не динамический диапазон, а максимальную оптическую плотность (таблица 3). Другими словами, максимальная оптическая плотность слайда должна быть меньше, чем максимальная плотность, которую распознает сканер.

    Чем сканировать?

    Что бы ни заявлял производитель, динамический диапазон планшетного сканера из класса «офисных и домашних», так называемого SOHO, стоимостью до $450, не превышает 2,6–2,7. Одна только CCD линейка, способная дать динамический диапазон 3,0, стоит дороже.

    Такой сканер хорошо обрабатывает непрозрачные оригиналы, но темные области на слайдах будут выглядеть сплошным черным пятном с огромным количеством шумов. Если вы попытаетесь на таком сканере отсканировать негатив, то после инвертирования все светлые области (те, что на негативе были темными), например, небо с облаками или светлая рубашка - будут выглядеть сплошным белым пятном без каких либо деталей, кроме тех же шумов.

    Поэтому, даже если к сканеру за $200 докупить слайд-модуль, качественно сканировать слайды и, тем более, негативы на нем не удастся.

    Минимальный динамический диапазон, при котором можно надеяться на более или менее приличный результат, - 3,0, а лучше 3,4. Минимальная стоимость планшетного сканера с таким диапазоном - $600. Слайд-сканер с 3,0D обойдется не намного дешевле, а для профессионального использования необходимы сканеры с диапазоном от 3,4D и выше.

    Что сканировать?

    Мы не будем пытаться классифицировать оригиналы, а лишь разберемся, каким оригиналам следует отдавать предпочтение, а каких - избегать, и почему.

    Начнем с самого простого - со сканирования текста. Высокого разрешения для этой работы не требуется, но тонкости все равно есть.

    Во-первых, при выборе способа сканирования любой сканер предлагает два варианта:

    • режим black&white (halftone) - черно белый без оттенков серого;
    • режим grayscale - с оттенками серого.

    В первом случае о рисунках можно забыть. Они превратятся в черные пятна, останется только текст. Причем, если текст не очень четкий, местами смазанный или просто бледный, то полученное изображение будет выглядеть плачевно.

    С другой стороны, режим black&white - самый быстрый и экономный с точки зрения размера файла. Применять его нужно только для очень четкого текста.

    В остальных случаях лучше предпочесть сканирование в оттенках серого. Программа распознавания текста прекрасно справится с таким файлом, да и рисунки, логотипы и т. п. отсканируются нормально.

    Если оригинал цветной, необходимо учесть возможности сканера.
    В принципе, самый лучший оригинал - слайд, чуть хуже - негатив, еще хуже - фотография, а полиграфических цветных отпечатков вроде вырезок из журналов вообще лучше избегать.

    Почему?

    Во-первых, именно в таком порядке уменьшается динамический диапазон оригиналов. Но это не самая главная причина, по которой слайд или негатив предпочтительнее фотографии.

    Дело в том, что каждый оригинал характеризуется цветовым охватом - набором передаваемых оттенков. Этот параметр не следует путать с глубиной цвета. Глубина цвета показывает количество оттенков, а цветовой охват показывает, какие это оттенки.

    Проиллюстрируем это на примере. Самый большой цветовой охват у человеческого глаза. Его можно изобразить в виде некой фигуры, на которой отражены все воспринимаемые оттенки (см. рисунок).

    Большой треугольник очерчивает все оттенки, которые передает слайд и вообще фотопленка, треугольник поменьше соответствует цветам, передаваемым монитором (контур для сканера представляет собой нечто среднее между слайдом и монитором). Наконец, внутренняя фигура отвечает набору красок CMYK, то есть цветовому охвату типографской машины (и цветного лазерного принтера, у которого цветовой охват немногим больше).

    Таким образом, зелено-голубую гамму хорошо передает фотопленка и сканер, но не принтер (известный факт: на стандартном 4 цветном принтере нельзя изобразить голубое небо).

    Отсюда мораль - если есть выбор, то надо сканировать оригинал, который передает большее количество оттенков, то есть слайд, а не отпечатанную с него фотографию. Однако сканировать слайды могут далеко не все сканеры - из за слабого динамического диапазона офисных моделей. Поэтому у владельца сканера за $100–200 часто попросту нет выбора.

    О полиграфических отпечатках надо сказать отдельно. Принтеры и полиграфические машины печатают специальными точками - растром, частота которого не слишком отличается от разрешения сканера 1. Хотите узнать, что получится, если наложить друг на друга две периодические структуры - сканера и отпечатка? Посмотрите на свет через два слоя капрона или любой другой полупрозрачной синтетической ткани. Вы увидите муар. Такой же муар получится в результате сканирования полиграфического отпечатка.

    Бороться с этим эффектом позволяет специальная функция Descreen в драйвере сканера. Она удаляет муар, слегка размывая изображение. Но при этом существенно страдает качество. Поэтому сканировать вырезки из журнала можно только с последующим уменьшением изображения, тогда эффект размытости будет не так заметен.

    Краткое резюме - если позволяет сканер, сканируйте слайды, а не фотографии. Если есть возможность - избегайте сканирования полиграфических отпечатков, а если выхода нет, то сканируйте с последующим уменьшением картинки, минимум, в 1,5 раза.

    Для офисных и домашних задач, а также для большинства работ по компьютерной графике лучше всего подходят так называемые планшетные сканеры . Различные модели этого типа шире других представлены в продаже. Поэтому начнем с рассмотрения принципов построения и функционирования сканеров именно этого типа. Уяснение этих принципов позволит лучше понять значение технических характеристик, которые учитываются при выборе сканеров.

    Планшетный сканер (Flatbed scanner) представляет собой прямоугольный пластмассовый корпус с крышкой. Под крышкой находится стеклянная поверхность, на которую помещается оригинал, предназначенный для сканирования. Через это стекло можно разглядеть кое-что из внутренностей сканера. В сканере имеется подвижная каретка, на которой установлены лампа подсветки и система зеркал. Каретка перемещается посредством так называемого шагового двигателя . Свет лампы отражается от оригинала и через систему зеркал и фокусирующих линз попадает на так называемую матрицу , состоящую из датчиков , вырабатывающих электрические сигналы, величина которых определяется интенсивностью падающего на них света. Эти датчики основаны на светочувствительных элементах, называемых приборами с зарядовой связью (ПЗС, Couple Charged Device - CCD). Точнее говоря, на поверхности ПЗС образуется электрический заряд, пропорциональный интенсивности падающего света. Далее нужно только преобразовать величину этого заряда в другую электрическую величину - напряжение. Несколько ПЗС располагаются рядом на одной линейке.

    Электрический сигнал на выходе ПЗС является аналоговой величиной (т.е. ее изменение аналогично изменению входной величины - интенсивности света). Далее происходит преобразование аналогового сигнала в цифровую форму с последующей обработкой и передачей в компьютер для дальнейшего использования. Эту функцию выполняет специальное устройство, называемое аналого-цифровым преобразователем (АЦП, Analog-to-digital Converter - ADC). Таким образом, на каждом шаге перемещения каретки сканер считывает одну горизонтальную полоску оригинала, разбитую на дискретные элементы (пикселы), количество которых равно количеству ПЗС на линейке. Все отсканированное изображение состоит из нескольких таких полос.

    Рис. 119. Схема устройства и работы планшетного сканера на основе ПЗС (CCD): свет лампы отражается от оригинала и через оптическую систему попадает на матрицу светочувствительных элементов, а затем на аналого-цифровой преобразователь (АЦП)

    В цветных сканерах сейчас используются, как правило, трехрядная матрица ПЗС и подсветка оригинала калиброванным белым светом. Каждый ряд матрицы предназначен для восприятия одной из базовых цветовых составляющих света (красной, зеленой и синей). Чтобы разделить цвета, используют либо призму, разлагающую луч белого света на цветные составляющие, либо специальное фильтрующее покрытие ПЗС. Однако существуют цветные сканеры и с однорядной матрицей ПЗС, в которых оригинал по очереди подсвечивается тремя лампами базовых цветов. Однорядная технология с тройной подсветкой считается устаревшей.

    Выше мы описали принципы построения и работы так называемых однопроходных сканеров, которые сканируют оригинал за один проход каретки. Однако еще встречаются, хотя больше и не выпускаются промышленностью, трехпроходные сканеры. Это сканеры с однорядной матрицей ПЗС. В них при каждом проходе каретки вдоль оригинала используется один из базовых цветных светофильтров: за каждый проход снимается информация по одному из трех цветовых каналов изображения. Эта технология также устарела.

    Кроме CCD-сканеров, основанных на матрице ПЗС, имеются CIS-сканеры (Contact Image Sensor), в которых применяется фотоэлементная технология.

    Светочувствительные матрицы, выполненные по этой технологии, воспринимают отраженный оригиналом спет непосредственно через стекло сканера без использования оптических систем фокусировки. Это позволило уменьшить размеры и вес планшетных сканеров более чем в два раза (до 3-4 кг). Однако такие сканеры хороши только для исключительно плоских оригиналов, плотно прилегающих к стеклянной поверхности рабочего поля. При этом качество получаемого изображения существенно зависит от наличия посторонних источников света (крышка CIS-сканера во время сканирования должна быть закрыта). В случае объемных оригиналов качество оставляет желать лучшего, в то время как ССО-сканеры дают неплохие результаты и для объемных (до нескольких см в глубину) предметов.

    Планшетные сканеры могут быть снабжены дополнительными устройствами, такими как слайд-адаптер, автоподатчик оригиналов и др. Для одних моделей эти устройства предусмотрены, а для других нет.

    Слайд-адаптер (Transparency Media Adapter, TMA) - специальная приставка, позволяющая сканировать прозрачные оригиналы. Сканирование прозрачных материалов происходит с помощью проходящего, а не отраженного света. Иначе говоря, прозрачный оригинал должен находиться между источником света и светочувствительными элементами. Слайд-адаптер представляет собой навесной модуль, снабженный лампой, которая движется синхронно с кареткой сканера. Иногда просто равномерно освещают некоторый участок рабочего поля, чтобы не перемещать лампу. Таким образом, главная цель применения слайд-адаптера заключается в изменении положения источника света.

    Если же у вас есть цифровая камера (цифровой фотоаппарат), то слайд-адаптер, скорее всего, вам не нужен.

    Если сканировать прозрачные оригиналы без использования слайд-адаптера, то нужно понимать, что при облучении оригинала количества отраженного и проходящего света не равны друг другу. Так, оригинал пропустит какую-то часть падающего цвета, которая затем отразится от белого покрытия крышки сканера и снова пройдет через оригинал. Какая-то часть света отразится от оригинала. Соотношение между частями проходящего и отраженного света зависит от степени прозрачности участка оригинала. Таким образом, светочувствительные элементы матрицы сканера получат свет, дважды прошедший через оригинал, а также свет, отраженный от оригинала. Многократность прохода света через оригинал ослабляет его, а взаимодействие отраженного и проходящего пучков света (интерференция) вызывает искажения и побочные видеоэффекты.

    Автоподатчик - устройство, подающее оригиналы в сканер, которое очень удобно использовать при потоковом сканировании однотипных изображений (когда не нужно часто перенастраивать сканер), например, текстов или чертежей приблизительно одинакового качества.

    Кроме планшетных, есть и другие типы сканеров: ручные, листопротяжные, барабанные, слайдовые, для сканирования штрих-кодов, скоростные для потоковой работы с документами.

    Ручной сканер (Handheld Scanner) - портативный сканер, в котором сканирование осуществляется путем его ручного перемещения по оригиналу. По принципу действия такой сканер аналогичен планшетному. Ширина области сканирования - не более 15см. Первые сканеры для широкого применения появились в продаже в 80-х годах XX века. Они были ручными и позволяли сканировать изображения в оттенках серого цвета. Теперь такие сканеры нелегко найти.

    Листопротяжный или роликовый сканер (Sheetfed Scanner) - сканер, в котором оригинал протягивается мимо неподвижной линейной CCD- или CIS-матрицы, разновидность такого сканера - факс-аппарат.

    Барабанный сканер (Drum Scanner) - сканер, в котором оригинал закрепляется на вращающемся барабане, а для сканирования используются фотоэлектронные умножители. При этом сканируется точечная область изображения, а сканирующая головка движется вдоль барабана очень близко от оригинала.

    Слайдовый сканер (Film-scanner) - разновидность планшетного сканера, предназначенная для сканирования прозрачных материалов (слайдов, негативных фотопленок, рентгеновских снимков и т. п.). Обычно размер таких оригиналов фиксирован. Заметим, что для некоторых планшетных сканеров предусмотрена специальная приставка (слайд-адаптер), предназначенная для сканирования прозрачных материалов (см. выше).

    Сканер штрих-кодов (Bar-code Scanner) - сканер, предназначенный для сканирования товарных штрих-кодов. По принципу действия он сходен с ручным сканером и подключается к компьютеру, либо к специализированной торговой системе. При наличии соответствующего программного обеспечения распознавать штрих-коды может любой сканер.

    Скоростной сканер для работы с документами (Document Scanner) - разновидность листопротяжного сканера, предназначенная для высокопроизводительного многостраничного ввода. Сканеры могут быть оборудованы приемными и выходными лотками объемом свыше 1000 листов и вводить информацию со скоростью свыше 100 листов в минуту. Некоторые модели этого класса обеспечивают двустороннее (дуплексное) сканирование, подсветку оригинала разными цветами для отсечки цветного фона, компенсацию неоднородности фона, имеют модули динамической обработки разнотипных оригиналов.

    Итак, для дома и офиса лучше всего подходит планшетный сканер. Если вы хотите заниматься графическим дизайном, то лучше выбрать CCD-сканер (на основе ПЗС-матрицы), поскольку он позволяет сканировать и объемные предметы. Если вы собираетесь сканировать слайды и другие прозрачные материалы, то следует выбрать сканер, для которого предусмотрен слайд-адаптер. Обычно собственно сканер и подходящий к нему слайд-адаптер продаются отдельно. Если не получается приобрести слайд-адаптер одновременно со сканером, то при необходимости вы сможете сделать это позже. Необходимо также определить максимальные размеры сканируемых изображений. В настоящее время типовым является формат А4, соответствующий обычному листу писчей бумаги. Большинство бытовых сканеров ориентированы именно на этот формат. Для сканирования чертежей и другой конструкторской документации обычно требуется формат A3, соответствующий двум листам формата А4, соединенным по длинной стороне. В настоящее время цены однотипных сканеров для форматов А4 и A3 сближаются. Можно предположить, что оригиналы, не превышающие по размерам формат А4, будут лучше обрабатываться сканером, ориентированным на формат A3.

    Перечисленные выше параметры далеко не исчерпывают весь список, но на данном этапе нашего рассмотрения мы пока можем использовать только их. При выборе сканера решающими являются три аспекта: аппаратный интерфейс (способ подключения), оптико-электронная система и программный интерфей с (так называемый TWAIN-модуль). Далее мы рассмотрим их более подробно.

    С появлением цифровых фотоаппаратов эта задача упростилась до неприличия. Проявлять, печатать и даже сканировать уже давно не нужно, даже самые бюджетные модели обязательно пишут в EXIF дату съемки, а небюджетные ещё и координаты места - остаётся только скопировать файлы с карты памяти да использовать любую понравившуюся программу-вьюер. А если у вас в семье было несколько поколений фотографов, пусть даже и любителей?

    О том, что делать со старыми негативами, слайдами и отпечатками, и пойдёт речь в этой статье. Замечу, что Америк я не открывал и любой более-менее квалифицированный пользователь легко сделает всё это сам.

    1. Оборудование

    Покупка профессионального фильм-сканера в планы автора не входила: кроме негативов и слайдов, в архиве было около 4000 фотоотпечатков, для которых нужен планшетный сканер, в идеале - с автоподачей. Конечно, лучше сканировать оригинальный негатив, чем отпечатенный с него позитив, но разобраться, для каких снимков сохранились негативы, было невозможно. Покупать же два сканера ради разовой, по сути, работы не позволили жаба и здравый смысл.

    В итоге за 5990 руб. был куплен планшетный сканер среднего класса Epson Perfection V350 Photo , снабженный AFL (Auto Film Loader, автоподатчик для пленки). Оптическое разрешение 4800 DPI позволяет сканировать негативы и слайды. Конечно, динамический диапазон за эти деньги не такой, как у профессиональных фильм-сканеров, и скорость оставляет желать лучшего, но…

    Кроме сканера, понадобятся фотобачок для промывки старых 35-мм плёнок и пара прищепок для последующей просушки. Ещё нужно место на диске: отсканированные в адекватном разрешении ~9000 фотографий (JPG максимального качества) у автора заняли 45 Гб. Если кто-то решит хранить данные в loseless-формате (TIFF/PSD/etc.), то ещё больше.

    2. Программное обеспечение

    4. Коррекция фона. По смыслу это аналог коррекции уровней (Levels) в Adobe Photoshop. Работает хорошо, некоторые кадры позволяет «вытянуть» сразу на этапе сканирования. Уровень «высокий» почти не используется: если кадр изначально затемнен, попытка применения фильтра уменьшит контрастность до неприемлемых величин.

    5. Удаление дефектов. Самый неоднозначный фильтр. На снимках с большим количеством однородно заполненных участков (небо, спокойная вода, мебель) действительно позволяет убрать большое количество дефектов. На фотографиях с большим количеством лиц небольшого, относительно площади кадра, размера(групповые портреты, демонстрации) может принять части лица за дефект со всеми вытекающими. Особенно ему не нравятся глаза:) Фильтр ресурсоемкий, увеличивает время сканирования.

    Синхронизация веб-альбомов Picasa и каталога на диске

    После того, как в каталоге появятся первые файлы со сканера, нужно настроить синхронизацию с веб-альбомами Picasa. В свойствах альбома выбираем «Включить синхронизацию»:

    После включения режима синхронизации не забудьте указать размер фотографий. Для резервного копирования нужно установить «Изображения в исходном размере ». На скорости просмотра это не скажется, а вот на скорости синхронизации скажется сильно (зависит от вашей скорости соединения с интернетом). Еще можно включить режим «частный », если вы не хотите (я, например, не хочу:), чтобы ваши фотографии были общедоступны. В режиме «частный» можно выдать права доступа на просмотр и редактирование выбранным вами пользователям Google (нужен аккаунт Google).

    Вот и всё. Теперь, если у вас есть желание и время, можно оцифровать всё, что было отснято в доцифровую эпоху. Сканер сканирует, Picasa автоматически загружает фотографии на веб, а вы не забываете время от времени делать резервные копии на другие носители.

    Не забывайте о резервном копировании!

    Дополнительная информация:

    - : замечательный ресурс со статьями о сканировании плёнок.
    - там же: «Почему не следует сканировать плёнки на планшетнике » (полностью согласен, но…)