Катушка зажигания (или модуль зажигания) – элемент системы зажигания автомобиля, который преобразует низковольтное напряжение бортовой сети в высоковольтный импульс. Высокое напряжение, возникающее в , вызывает образование искры между электродами свечи зажигания и обеспечивает воспламенение топливно-воздушной смеси.

Устройство катушки зажигания
Катушка зажигания представляет собой трансформатор с двумя обмотками: первичной и вторичной, внутри которых находится стальной сердечник, а снаружи – изолированный корпус.

  • Первичная обмотка состоит из толстого медного изолированного провода и насчитывает от 100 до 150 витков. Обмотка имеет выводы 12 вольт.
  • Вторичная обмотка, как правило, располагается снаружи первичной. Она состоит из 15000-30000 витков тонкой медной проволоки. Такая система характерна как для модуля зажигания, для катушки зажигания сдвоенного типа, так и для индивидуальной катушки. а. Во вторичной обмотке создается импульсное напряжение до 35 000 вольт, которое и подается к свечам зажигания.
Катушка зажигания автомобиля масляного типа заполняется трансформаторным маслом, которое предохраняет ее от нагрева.

Принцип действия катушки зажигания

В первичную обмотку катушки подается низковольтное напряжение, который создает магнитное поле. Время от времени это напряжение отсекается прерывателем, вызывая резкое сокращение магнитного поля и образования в витках катушек электродвижущей силы (э.д.с.).
Согласно физическому закону электромагнитной индукции, величина образующейся таким образом э.д.с. прямо пропорциональна количеству витков обмотки контура. Поэтому во вторичной катушке с большим количеством витков образуется импульс высокого напряжения, который по высоковольтным проводам (не применимо к индивидуальной катушке зажигания, установленной прямо на свечу)подается к свече зажигания. Благодаря импульсу, передаваемому катушкой, между электродами свечи зажигания образуется искра, которая воспламеняет топливно-воздушную смесь.
В устаревших моделях автомобилей напряжение от катушки зажигания подавалось ко всем свечам с помощью распределителя зажигания. Такая схема оказалась недостаточно надежной, поэтому катушки зажигания (их ещё называют свечными) современного автомобиля объединены в систему и распределены по одной на каждую свечу.

Виды катушек зажигания автомобиля
Различают общие и индивидуальные катушки зажигания.

  • Общая катушка зажигания используется в системах зажигания с распределителем или без него. Ее конструкция описана выше: первичная обмотка располагается снаружи вторичной, внутри которой находится сердечник. Катушки с сердечником заключены в стальной корпус. Импульс от вторичной обмотки подается на свечи зажигания.
  • Индивидуальная катушка зажигания используется в системах прямого электронного зажигания. В отличие от общей конструкции, в индивидуальных катушках первичная обмотка находится внутри вторичной. Индивидуальная катушка устанавливается непосредственно на свечу зажигания, поэтому высоковольтный импульс передается практически без потери мощности.
Рекомендации по эксплуатации модулей зажигания
1. Не оставляйте включенным зажигание без запуска двигателя на долгое время. Это существенно сокращает срок службы катушек зажигания.
2. Найдите время для очистки и проверки состояния катушки. Убедитесь в том, что крепления проводов в порядке, особенно важно проверить высоковольтный провод. Убедитесь также, что на корпус или внутрь его не попадает вода.
3. Не отсоединяйте высоковольтный провод от катушки голыми руками при включенном зажигании.

Назначение катушки зажигания

Катушка зажигания - это один из важнейших элементов воспламенения топлива в цилиндрах двигателя. Она представляет собой устройство, потребляющее низковольтный ток от аккумулятора автомобиля и преобразующее его в высоковольтные импульсы. Они в нужный момент образуют искру между электродами свечи зажигания и воспламеняют топливно-воздушную смесь.

Конструкция

Устройство катушки зажигания сходно с трансформатором: она тоже имеет две обмотки (первичную и вторичную) на сердечнике, а специальное устройство преобразует постоянный ток батареи в импульсный, напряжение которого повышается в несколько тысяч раз по закону электромагнитной индукции. В системах воспламенения старых автомобилей имелся только один такой узел. Импульсы от него поочередно подавались на все свечи через распределитель и высоковольтные провода. Но в последнее время на машинах все чаще встречается система с выносом отдельной катушки на каждый цилиндр.

Диагностика методом замыкания свечи на корпус

Без данного устройства автомобиль не способен завестись. Следовательно, проверка катушки зажигания - эта та операция, которую должен уметь производить любой автомобилист. Наиболее распространенный способ - это выкрутить свечи зажигания из цилиндра и замкнуть их на корпусе двигателя с последующей попыткой завести машину. Если искра проскакивает между электродами, значит, катушка зажигания исправна. Если же нет, то, скорее всего, проблема именно в этом устройстве. Но у многих автолюбителей существует мнение, что при таком способе проверки катушка зажигания может вывести из строя.

Диагностика методом измерения сопротивления

Существует безопасная альтернатива, но в этом случае понадобится омметр. Метод заключается в измерении сопротивлений обмоток. Точные их значения указаны в технических справочниках, но обычно рабочая катушка зажигания имеет на первичной обмотке сопротивление 16-17 КОм. Если обнаружено сильное расхождение с данной цифрой или вообще разрыв (бесконечное сопротивление) или короткое замыкание (величина будет стремиться к нулю), то, скорее всего данный агрегат неисправен.

Альтернативные методы диагностики

Еще один способ - это установка вашей катушки на другую машину. В этом случае вы однозначно узнаете, исправен ли данный компонент. Сложность в том, что автомобиль должен быть той же марки и той же комплектации что и ваш, а еще вам нужно согласие его владельца. Также существуют и визуальные признаки выхода из строя катушки: запах горелой изоляции или следы пробоя (наличие черных прогоревших точек на корпусе и обмотках).

Можно ли отремонтировать катушку зажигания

Что делать в случае, если установлена неисправность данного компонента системы зажигания? Только менять - катушка не поддается ремонту. Точнее, отремонтировать ее можно, но сложность замены обмоток делает такую операцию нерентабельной.

Методика проведения работ

Помните о технике безопасности при всех манипуляциях с системой зажигания, так как напряжение катушки может достигать 20-25 тысяч вольт. Используйте инструменты с электроизолированными ручками и не работайте в сырых помещениях или под дождем. Если вы не можете найти причину неисправности автомобиля самостоятельно, обратитесь в специализированный сервис. Удачи на дорогах!

Это, пожалуй, единственное из электрооборудования автомобиля, которое не изменилось по принципу использования с момента зарождения батарейных систем зажигания. Усовершенствовались только способы управления. А альтернативы катушке выглядят фантастически, несбыточно и даже на слух малонадёжно, например, лазерная система зажигания. Хотя системы зажигания на пьезотрансформаторах имеют место быть, у них есть свои проблемы, и чаще используются в компактных системах зажигания.

Упомянуть надо ещё и «конденсаторные» системы зажигания, но конкуренции с «катушечными» они не выдерживают ни по стоимости, ни по надёжности (в следствии сложности конструкции).

ПОСМОТРЕТЬ ВИДЕО

Катушка зажигания – это электрическое устройство преобразующее низкое напряжение бортовой сети автомобиля в импульсы высокого напряжения. Эти импульсы создают искру между электродами свечи зажигания. Искра же зажигает смесь в цилиндрах двигателя.

Основная задача катушки зажигания – обеспечить ток свечи зажигания, необходимый для гарантированного воспламенения топливно-воздушной смеси.

Существующие типы катушек зажигания для разных типов двигателя (до 16 клапанов)

Современные катушки зажигания можно разделить на несколько типов:

  • работающая на все свечи – общая;
  • на одну свечу – индивидуальная(на четырёхцилиндровый двигатель, например – четыре катушки зажигания).

Индивидуальные катушки зажигания применяют в основном на двигателях где 16 клапанов(точнее на двигателях у которых больше чем 2 клапана на цилиндр), потому как такое применение легко позволяет корректировать угол опережения зажигания не просто за оборот, но и от свечи к свече, что служит способом форсировки или поддержки нештатной работы двигателя. Да и устанавливаются в свечные колодцы между распредвалами, что, справедливости ради, не улучшает их долговечность из-за теплового режима.

  • На две свечи – двухискровая (двигатель четыре цилиндра – система из 2 х катушек зажигания). Имеет внутри встроенный коммутатор (на который возложена корректировка времён необходимых для нормальной работы катушки) или просто усилитель зажигания (который только усиливает команды от блока управления);
  • двухискровые могут быть конструктивно соединены в блоки зажигания. Так цена и габариты(относительно к просто двухискровым катушкам) системы зажигания снижаются. Хотя высоковольтный провод и наконечник на каждый цилиндр и остаются, но подключение к системе управления двигателем упрощается.

Схема устройства катушек

Строго говоря, катушка зажигания – это слэнг автолюбителей. У радиолюбителей катушка – это простая индуктивность, а то что ставят в автомобилях – это трансформатор. Трансформатор, который преобразует импульсы низкого напряжения в высоковольтные импульсы.

Устройство катушки зажигания не слишком сложное. Трансформатор может быть с разомкнутым сердечником, что-то по типу катушки Румкорфа. Такие катушки называли «бобина». Просто при разборке такой катушки зажигания ничего интересного, кроме мотка очень тонкого провода (сотые доли миллиметра диаметром) на пакете металлических пластин, внутри не было. Катушка может быть и с замкнутым сердечником, именно такие распространены в последнее время.

Итак, как устроена «бобина»:

  1. Крышка.
  2. Контактное гнездо.
  3. Винт.
  4. Вывод низкого напряжения.
  5. Уплотнительная прокладка.
  6. Кольцевой магнитопровод.
  7. Первичная обмотка.
  8. Вторичная обмотка.
  9. Фарфоровый изолятор.
  10. Кожух катушки.
  11. Трансформаторное масло.
  12. Сердечник.
  13. Картонная прокладка.
  14. Контактная пружина.

Современная индивидуальная катушка зажигания состоит из следующих компонентов (на схеме):

А так выглядит схема двухискровой катушки:

  1. Выход высокого напряжения на первую свечу.
  2. Выход высокого напряжения на вторую свечу.
  3. Масса для заливки.
  4. Клеммы низкого напряжения.
  5. Железный сердечник.
  6. Первичная обмотка.
  7. Вторичная обмотка.

Принцип работы

Рассмотрим принцип работы устройства.

Один конец первичной обмотки подключен к цепи 15 автомобиля(+ после замка зажигания). Второй же конец идёт на коммутирующий элемент, механический контакт или транзистор. Когда контакт замкнут, нарастающий ток в первичной обмотке вызывает рост магнитного поля в сердечнике катушки.

Это и есть процесс накопления энергии. Когда контакт первичной цепи размыкается, происходит высвобождение накопленной энергии магнитного поля через вторичную обмотку в искровой зазор высоковольтной цепи системы зажигания. То есть энергия катушки зажигания или, иначе, высокое напряжение из катушки зажигания по бронепроводам вызывает искру между электродами свечи.

В принципе, схема включения катушки зажигания в электроцепи автомобиля является обратноходовым преобразователем. Почему преобразователь – понятно. А почему обратноходовый? Потому что катушка зажигания работает в тот момент, когда, собственно, перестают подавать на неё энергию. На «обратном» ходе.

Почему сделано так? Потому что накопление энергии в катушке занимает время. И время выдачи искры при других принципах включения сильно зависит от величины общего искрового промежутка в цепи искры. Т.е. угол опережения зажигания будет сильно плавать.

Обладать большой волатильностью, как сейчас модно говорить. А так как задача устройства дать искру гарантированной энергии в гарантированное время, был выбран такой принцип образования искры. Также в системах с индивидуальными катушками это уменьшает количество меди, используемой в качестве первичной обмотки, потому что можно поднять её индуктивность из-за большего возможного времени на накопление энергии.

2-искровые устройства

2-ухискровая катушка зажигания работает с одним отличием от одноискровой (общей или индивидуальной). У неё оба вывода вторичной обмотки выполнены для подключения свечей. Т.е. за один цикл работы искра проскакивает в двух свечах. А свечи соответственно выбираются в цилиндрах, в одном из которых идёт рабочий ход, а во втором начинается цикл впуска.

Использование такой схемы работы требует дополнительных конструктивных решений, что, как ни странно, повышает ресурс катушки. В данной конструкции легко обеспечить большой зазор высоковольтной обмотки от массы автомобиля, что облегчает работу диэлектрика обмоток. И легко вынести сердечник за корпус обмоток, что унифицирует катушку зажигания с другими намоточными радиоэлектронными приборами, от этого снижается цена устройства.

Цены на катушки

Ценообразование на катушки зажигания в основном зависит от их конструктивных особенностей и схемы устройства. В частности, объединение двухискровых катушек в блоки позволяет не только уменьшить конечные габариты устройства, но и снизить его стоимость.

Возможные неисправности

Неисправностей в катушке зажигания не так уж и много. Выделим два класса: неисправности, из-за которых вообще теряется искра, и неисправности, из-за которых параметры искры не позволяют нормально работать двигателю.

ПОСМОТРЕТЬ ВИДЕО

Вообще искры может не быть по следующим причинам (при прочем исправном оборудовании, т.е. первичная цепь катушки зажигания исправна):

  • обрыв первичной обмотки;
  • полное замыкание первичной обмотки;
  • выгорание встроенной электроники (если она есть).

А вот причины потери параметров искры:

  • межвитковое замыкание первичной обмотки;
  • межвитковое замыкание вторичной обмотки;
  • обрыв вторичной обмотки (да-да, обрыв вторичной обмотки – просто даёт дополнительный искровой промежуток в общий искровой промежуток высоковольтной цепи зажигания и какое-то время, часто довольно длительное, автомобиль может работать внешне вполне нормально);
  • пробой в высоковольтной цепи катушки (энергия искры будет достаточной, но пробиваемый зазор будет недостаточен для работы свечей на тяжёлых режимах работы двигателя);
  • потеря рабочих параметров встроенной электроники.

Если в первом случае искры вообще нет, то во втором случае может присутствовать «плавающая» неисправность. Т.е. неисправность проявляющаяся не систематически. Такие сложно выловить, хотя есть общий признак – ненормально высокая температура катушки зажигания.

Алгоритм замены катушки зажигания на Лада Приора

ПОСМОТРЕТЬ ВИДЕО

Замена одной или нескольких катушек зажигания подчиняется общим принципам. Рассмотрим на примере автомобиля марки Лада Приора:

  • необходимо убедиться, что зажигание автомобиля выключено (для любого автомобиля);
  • снимаем верхнюю крышку защиты двигателя (если есть, откручиваем или отщёлкиваем клипсы);
  • снимаем разъём идущий от ЭБУ к индивидуальной катушке зажигания;
  • откручиваем болт, удерживающий ее;
  • вытаскиваем неисправный индивидуальный модуль из свечного колодца;
  • вставляем исправную катушку на освободившееся место;
  • закручиваем обратно болт крепления;
  • прикручиваем/защёлкиваем верхнюю крышку защиты двигателя.

Замена катушки на двигателях (на автомобилях Ниссан, Шевроле, Хонда, Форд, Опель, Рено Логан или Пежо)

Процесс замены катушек, в целом, происходит по одинаковому алгоритму на автомобилях всех марок, так как принцип их установки и работы на них одинаков. Поэтому при необходимости замены устройства можно опираться на общие правила, указанные выше.

Проверка работоспособности

Проверить работоспособность катушки в системе зажигания довольно легко. Небольшая сложность возникает при проверке индивидуальных катушек зажигания и модулей. Дальше считаем, что наш электронный блок управления двигателем не диагностирует обрыв в цепи модуля (иначе придётся делать следующую процедуру одновременно со всеми катушками).

Главное — обеспечить в высоковольтной цепи катушки достаточный зазор для проверки искры. Если катушка общая, отсоединяем бронепровод из распределителя зажигания, устанавливаем в него свечу.

Свеча подготовлена следующим образом:

  • берём болт или кусок металлической шпильки и прикручиваем изолентой к одному концу бруска из какого-нибудь диэлектрика, сухого дерева, куску полипропиленовой трубы от отопления или тому подобному;
  • к этому болту прикручиваем провод и присоединяем его к массе автомобиля;
  • к другому концу бруска прикручиваем старую свечу с отломанным боковым электродом так, чтобы зазор между центральным электродом свечи и болтом был 8-11 мм для контактной системы зажигания, 22-25 мм для электронных систем зажигания.

Затем просто крутим двигатель стартером. Искра должна быть хорошо видима, и иметь, желательно, жёлтый цвет.

Если искры не видно, но слышны щелчки – вероятно есть пробой цепи искры на массу. Если щелчков нет – вероятен как обрыв, так и неисправность коммутирующих устройств.

Для диагностики двухискровых катушек зажигания приспособление можно сделать из двух свечей с отломанными боковыми электродами, с выставленным нужным зазором. И нет необходимости соединять их с землёй, даже рекомендуется держать их подальше от массы автомобиля при испытаниях.

Также не рекомендуется проводить проверки катушки зажигания на искру вставив просто отвёртку и положив её на двигатель. Так как двигатель при заводке трясёт, существует вероятность падения приспособления и попадания высокого напряжения на электронику автомобиля, что чревато. Да и зазор искры таким способом выставить и удержать при заводке невозможно.

ПОСМОТРЕТЬ ВИДЕО

И ещё не маловажное условие: необходимо учесть, что при проверке индивидуальных или сдвоенных модулей требуется прервать подачу топлива к двигателю. Проще всего это сделать вытащив предохранитель бензонасоса или разъединить жгут идущий к бензонасосу.

Другие проверки требуют определённых знаний и приборов, потому их рассматривать не будем. Главная задача — увидеть наличие искры. А за остальным лучше обратиться к специалистам.

Катушка зажигания предназначена для создания высокого напряжения, которое в дальнейшем используется свечой для образования искры. Поэтому ее исправная работа необходима для нормального функционирования системы зажигания. По сути катушка является небольшим трансформатором, на первичную обмотку которой приходит стандартные 12 В от аккумулятора, а выходит напряжение в несколько кВ. Она используется во всех системах зажигания - , бесконтактной и электронной. Причины выхода из строя катушки типичны. Как правило, это обрыв провода, повреждение изоляции, механические деформации. Далее мы с вами рассмотрим признаки неисправности и методы диагностики катушки зажигания.

В случае, если в двигателе установлены индивидуальные катушки, то проверить их можно, переставляя на другие свечи. При этом проводку лучше не трогать, чтобы не повредить ее целостность.

Модуль катушек зажигания

Метод «искры в шприце»

Процесс проверки катушки с помощью такого самодельного устройства достаточно прост. Для этого нужно подсоединить поочередно катушки к свече получившегося «прибора». Крепеж-крокодил присоединить к «массе» корпуса машины. На время смены тестируемых катушек двигатель необходимо глушить и запускать потом заново.

Изначально с помощью поршня нужно выставить минимальный зазор между проволокой на поршне и электродом (1…2 мм). И путем регулирования расстояния от проволоки на поршне до электрода на свече визуально смотреть на процесс появления между ними искры. Максимальное расстояние в данном случае у разных машин будет разным, и зависит оно от качества и состояния свечи зажигания, состояния электросистемы машины, качества «массы» и других факторов. Обычно искра при таких испытаниях должна появляться при расстоянии между электродами от 1…2 мм до 5…7 мм.

Перед каждым тестированием работы получившегося аппарата нужно обязательно отсоединять разъем с каждой форсунки с тем, чтобы топливо не заливало цилиндр во время проверки.

Главное, о чем можно точно судить при таких испытаниях - сравнение состояния разных катушек по цилиндрам. Если имеет место неисправность или - это будет видно по длине искры по сравнению с более-менее исправными катушками.

Проверка сопротивления изоляции

Еще один популярный метод проверки заключается в измерении значения сопротивления изоляции проводов в обмотках катушки. Для этого вам понадобится мультиметр, способный измерять сопротивление. Катушку зажигания лучше демонтировать с автомобиля, чтобы работать было удобнее. Процедура замера несложна. Главное знать, где расположены выводы первичной и вторичной катушек, так как измерять сопротивление необходимо проверить на них обеих.

Перед началом работы убедитесь в исправности мультиметра. Для этого включите режим измерения сопротивления и замкните щупы между собой. На экране должен быть 0.

Два щупа мультиметра попарно подсоединяют (касаются) к выводам первичной обмотки. Значение сопротивления должно находиться в пределах 0,5...3,5 Ом (у некоторых катушек может быть больше, точную информацию вы найдете в справочной литературе). Аналогичную процедуру необходимо провести и со вторичной катушкой. Однако тут диапазон значений будет другим - от 6 до 15 кОм (аналогично информацию уточняйте в справочной литературе).

Процедура замера сопротивления изоляции катушки зажигания

Если значение будет мало, значит, в обмотке повредилась изоляция, и вы имеете дело с коротким, скорее всего межвитковым, замыканием. Если же сопротивление слишком велико, то это означает, что провод обмотки оборвался и нет нормального контакта. В любом случае необходимо выполнять ремонт, то есть перематывать обмотку. Однако в большинстве случаев лучше попросту заменить катушку зажигания , так как этот способ избавит вас от лишних хлопот и затрат. Это касается практически любого автомобиля, ведь стоимость ремонта будет превышать цену самой катушки.

Если вы имеете дело с индивидуальными или двухвыводными катушками, то здесь дело обстоит несколько иначе. Значение на первичной обмотке должны быть аналогичными. А что касается «вторички», то значение сопротивления будут идентичными на обоих выводах. Если на машине установлена катушка с четырьмя выводами, то проверку нужно делать на всех выводах.

Также учтите, что при измерении сопротивления на вторичной обмотке важно учитывать полярность. В частности, черным щупом мультиметра коснитесь центрального вывода («массы»), а красным - стержня наконечника.

Осциллограф покажет все

Самый профессиональный метод проверки катушки - воспользоваться осциллографом. Только он способен дать полную информацию о состоянии системы зажигания, и в частности, катушек зажигания. Поэтому в сложных случаях имеет смысл воспользоваться электронным осциллографом и дополнительным программным обеспечением. Особенно это актуально когда имеет место так называемое межвитковое замыкание на катушках вторичного напряжения (с высоким напряжением).

Если с помощью осциллографа снять график значений рабочих напряжений в динамике (видно на рисунке), то по нему можно понять, что причиной возможных описанных выше неисправностей будет именно катушка зажигания. Дело в том, что при возникновении межвиткового замыкания во вторичной катушке уменьшается энергия, которая могла бы потенциально запастись в этой самой катушке, а это, в свою очередь, приводит к уменьшению времени горения искры, то есть, пропускам воспламенения. Особенно это заметно при резком нажатии на педаль акселератора.

Катушка целая

Катушка пробитая

Итоги

Проверить катушку зажигания совсем несложно. Это может сделать любой, даже начинающий, автолюбитель. Самый простой и эффективный метод - измерение сопротивления изоляции на первичной и вторичной обмотках. Для этого лучше снять катушку для удобства проведения работы.

Помните, что при выявлении неисправности редко имеет смысл проводить ремонт, в частности, перематывать одну или вторую обмотки. Гораздо проще купить и заменить новую катушку зажигания целиком.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности . Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – и .

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку:), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный 🙂

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока .

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость 🙂 Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции . Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: , title="Rendered by QuickLaTeX.com" height="12" width="39" style="vertical-align: 0px;">, участок 3-4: title="Rendered by QuickLaTeX.com" height="12" width="41" style="vertical-align: 0px;">, ). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника). А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока). И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

Где – круговая частота: . – это .

Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение ? Здесь все на самом деле просто 🙂 По 2-му закону Кирхгофа:

А следовательно:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе () друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

Вот и с включением катушки в цепь переменного тока мы разобрались 🙂

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!