Звуковая система компьютера состоит из звукового адаптера (звуковой карты) и электроакустических преобразователях звуковых колебаний (микрофона и звуковых колонок).

Звуковые карты выполняют следующие функции:

§ дискретизацию аналоговых сигналов с частотами 11,025 кГц, 22,05 и 44,1 кГц. Первая частота относится к 8 битовым картам, другие – к 16 битовым;

§ 8- или 16– битовое квантование, кодирование и декодирование с использованием линейной импульсно-кодовой модуляции (ИКМ);

§ одновременно производить запись и воспроизведение звуковой информации (режим Full duplex);

§ ввод сигналов через монофонический микрофон с автоматическим регулированием уровня входного сигнала;

§ ввод и вывод аудиосигналов через линейный вход/выход;

§ микширование (смешивание) сигналов от нескольких источников и выдача суммарного сигнала в выходной канал. В качестве источников используются:

а) аналоговый выход CD-ROM;

в) музыкальный синтезатор;

г) внешний источник, подключенный к линейному входу.

§ управление уровнем суммарного сигнала и сигнала каждого из каналов в отдельности;

§ обработка стереофонических сигналов;

§ синтез звуковых колебаний с использованием частотной модуляции (FM) и волновых таблиц (WT).

Звуковая карта должна использовать не более 13% ресурсов процессора ЭВМ при частоте дискретизации 44,1 кГц и не более 7% - при f g = 22,05 кГц. В звуковой карте осуществляется обработка аналоговых и цифровых сигналов. В соответствии со спецификацией АС-97 (Audio Codec 97 Component Specification ), разработанной фирмой Intel в 1997 году, обработка звуковых сигналов разделена между двумя устройствами:

звуковым кодеком (AC-audio codec ) и

цифровым контроллером (DC – digital controller ).

Аналоговая БИС должна располагаться вблизи звуковых соединителей ввода/вывода и как можно дальше от шумящих цифровых шин. Цифровая БИС располагается ближе к системной шине звуковой карты. Соединение этих микросхем осуществляется по унифицированной внутренней шине AC–link. В современных моделях РС эти микросхемы располагаются на системной плате компьютера. Расширенная модификация БИС звукового кодека дополнительно выполняет функции модема.

В упрощенном виде схема аудиосистемы РС может быть представлена следующим образом (рисунок 10.13). Микрофон (М) осуществляет преобразование акустических колебаний в электрический, а громкоговоритель (Гр.) преобразование электрических колебаний в акустические. Входной сигнал с микрофона усиливается, а с линейного входа подается непосредственно на аналого-цифровой преобразователь.

Рисунок 10.13 - Структура звуковой карты

Дискретный сигнал можно представить в виде произведения исходного сигнала U(t) и дискретизирующей последовательности P(t)

U д (t) = U(t)P(t) .

Дискретизирующая последовательность состоит из очень коротких импульсов. При теоретическом описании эта последовательность представляется δ – импульсами, которые следуют с частотой дискретизации f о = 1/Т о

P(t) = ∑ δ (t - nT o)

Временная диаграмма процесса дискретизации и квантования показана на рисунке 10.14

Синтез звуковых сигналов. Синтезатор предназначен для генерации звуков музыкальных инструментов, соответствующие определенным нотам, а также создавать „немузыкальные” звуки: шум ветра, выстрела и т.п.

Одна и та же нота, воспроизводимая на музыкальном инструменте, звучит по разному (скрипка, труба, саксофон). Это вызвано тем, что хотя определенной ноте соответствует колебание конкретной частоты, звуки различных инструментов, кроме основного тона (синусоиды), характеризуются наличием дополнительных гармоник – обертонов. Именно обертоны определяют тембровый окрас голоса музыкального инструмента.

Рисунок 10.14– Временная диаграмма оцифровки входного сигнала

Созданный с помощью музыкального инструмента звуковой сигнал состоит из трех характерных фрагментов – фаз. Так, например, при нажатии клавиши рояля амплитуда звука сначала быстро растет до максимума, а затем немного спадает (рисунке 10.15). Начальная фаза звукового сигнала называется атакой. Длительность атаки для различных музыкальных инструментов варьируется от единиц до десятков и даже сотен мс. После атаки начинается фаза „поддержки”, в течение которой звуковой сигнал имеет стабильную амплитуду. Слуховое ощущение высоты звука формируется как раз на стадии поддержки.

Далее следует участок с относительно быстрым затуханием уровня сигнала. Огибающая колебаний во время атаки, поддержки и затухания называется амплитудной огибающей. Различные музыкальные инструменты имеют разные амплитудные огибающие, тем не менее, отмеченные фазы характерны практически для всех музыкальных инструментов, за исключением ударных.

Для создания электронного аналога реального звука, т.е. для синтеза звука, необходимо воссоздать огибающие гармоник, из которых состоит реальный звук. Существует несколько методов синтеза. Одним из первых и наиболее изученных является аддитивный синтез. Звук в процессе синтеза формируется путем сложения нескольких исходных звуковых волн. Этот метод использовали еще в классическом органе. Специальной конструкцией клапанов при нажатии клавиши заставляли звучать сразу несколько труб. При этом звучащие трубы были настроены либо в унисон или в одну две октавы. При нажатии клавиши первыми начинали звучать короткие трубы, дающие высокие обертоны, затем вступала средняя секция и последними – басы.

При цифровом аддитивном синтезе отдельно формируется N гармоник с частотами от f 1 до f N и амплитудами от A 1 (t) до A N (t). Затем эти гармоники складываются.

Второй метод является разновидностью нелинейного синтеза. Для получения одного музыкального звука используется сигнал одного генератора. Гармоническую окраску получают в результате нелинейных искажений исходного сигнала. Для этого синусоидальный сигнал, формируемый генератором, управляемым кодом (ГУК) с амплитудой A 1 и частотой f 1 (рисунок 10.16 а) пропускают через нелинейный элемент с некоторой характеристикой К(х) (рисунок 10.16 б). Зная амплитуду сигнала A 1 и вид характеристики К(х) , можно вычислить спектр сигнала на выходе (рисунок 10.16 в).

Следующим широко распространенным методом является синтез на основе частотной модуляции (широко используется в ЭМИ фирмы Yamaha). При частотной модуляции осуществляется изменение частоты f 0 несущего колебания U(t) = Asin (2πf 0 + φ) по закону модулирующего колебания x (t). Выражения для частотно-модулированного колебание имеет вид

U(t) = Asin (ω o t + Δω∫dt),

Величина изменения частоты несущего колебания Δω 0 =2π f 0 называется девиацией частоты, аотношение отклонения Δf 0 частоты модулированного колебания к частоте модулирующего колебания f m называется индексом частотной модуляции m f = Δf 0 /f m . Изменяя индекс модуляции можно изменять спектр сигнала на выходе модулятора и тем самым достичь качества синтезируемого звука, близкого к естественному звучанию.

Выражения для частотно-модулированного колебание при синусоидальном модулирующем колебании x (t) = sin ω o t имеет вид

U(t) = Asin .

Спектр модулированных сигналов при различных индексах модуляции изображен на рисунке 10.17.

знать:




Звуковая система ПК. Состав звуковой системы ПК. Принцип работы и технические характеристики звуковых плат. Направления совершенствования звуковой системы. Принцип обработки звуковой информации. Спецификация звуковых систем.
Методические указания
Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:


  • запись звуковых сигналов, поступающих от внешних источни­ков, например, микрофона или магнитофона, путем преобразо­вания входных аналоговых звуковых сигналов в цифровые и по­следующего сохранения на жестком диске;

  • воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (науш­ников);

  • воспроизведение звуковых компакт-дисков;

  • микширование (смешивание) при записи или воспроизведе­нии сигналов от нескольких источников;

  • одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex);

  • обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

  • обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3D-Sound) звучания;

  • генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

  • управление работой внешних электронных музыкальных инст­рументов через специальный интерфейс MIDI.
Звуковая система ПК конструктивно представляет собой зву­ковые карты, либо устанавливаемые в слот материнской пла­ты, либо интегрированные на материнскую плату или карту рас­ширения другой подсистемы ПК. Отдельные функциональные мо­дули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Рисунок 10 - Структура звуковой системы ПК
Классическая звуковая система, как показано на рис. 5.1, со­держит:


  • модуль записи и воспроизведения звука;

  • модуль синтезатора;

  • модуль интерфейсов;

  • модуль микшера;

  • акустическую систему.
Первые четыре модуля, как правило, устанавливаются на зву­ковой карте. Причем существуют звуковые карты без модуля син­тезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной мик­росхемы. Таким образом, Chipset звуковой системы может содер­жать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпе­вают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не ме­няются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта
Вопросы для самоконтроля:


  1. Звуковая система ПК;

  2. Состав звуковой системы ПК;

  3. Принцип работы и технические характеристики звуковых плат;

  4. Направления совершенствования звуковой системы;

  5. Принцип обработки звуковой информации;

  6. Спецификация звуковых систем.

Тема 6.2 Модуль интерфейсов обработки звуковой информации
Студент должен:
иметь представление:


  • о звуковой системе ПК

знать:


  • состав звуковой подсистемы ПК;

  • принцип работы модуля записи и воспроизведения;

  • принцип работы модуля синтезатора;

  • принцип работы модуля интерфейсов;

  • принцип работы модуля микшера;

  • организацию работы акустической системы.

Состав звуковой подсистемы ПК. Модуль записи и воспроизведения. Модуля синтезатора. Модуль интерфейсов. Модуль микшера. Принцип работы и технические характеристики акустических систем. Программное обеспечение. Форматы звуковых файлов. Средства распознавания речи.
Методические указания
Модуль записи и воспроизведения звуковой системы осуще­ствляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

Запись звука - это сохранение информации о колебаниях зву­кового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и циф­ровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК опери­рует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая систе­ма, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обра­ботки сигнала с помощью ПК необходимо обратное преобразова­ние цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобра­зование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования.

^ Предварительно аналоговый звуковой сигнал поступает на ана­логовый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсче­тов аналогового сигнала с заданной периодичностью и определя­ется частотой дискретизации. Причем частота дискретизации дол­жна быть не менее удвоенной частоты наивысшей гармоники (ча­стотной составляющей) исходного звукового сигнала.

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигна­ла и преобразование его в дискретный по времени и амплитуде. На рисунке 11 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.

^ Рисунок 11 - Схема аналого-цифрового преобразования звукового сигнала
Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при кван­товании зависит от количества разрядов кодового слова.

^ Рисунок 12 - Дискретизация по времени и квантование по уровню аналого­вого сигнала квантования амплитуды отсчета.
Аналого-цифровое преобразование осуществляется специаль­ным электронным устройством - аналого-цифровым преобразова­телем (АЦП), в котором дискретные отсчеты сигнала преобразу­ются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелатель­ные высокочастотные помехи, для фильтрации которых получен­ные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рисунке 12. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой диск­ретизации. На втором этапе из дискретных отсчетов путем сглажи­вания (интерполяции) формируется непрерывный аналоговый сиг­нал с помощью фильтра низкой частоты, который подавляет пе­риодические составляющие спектра дискретного сигнала.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, исполь­зуют компрессию (сжатие), заключающуюся в уменьшении количества отсчетов и уровней квантования или числа бит, при­ходящихся на один отсчет.

^ Рисунок 13 - Схема цифроаналогового преобразования
Подобные методы кодирования звуковых данных с использо­ванием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20% первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия - кодеков (кодирование-декодиро­вание), поставляемых вместе с программным обеспечением зву­ковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения циф­рового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являют­ся: частота дискретизации; тип и разрядность АЦП и ЦАП; спо­соб кодирования аудиоданных; возможность работы в режиме Full Duplex.

Частота дискретизации определяет максимальную час­тоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; му­зыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стерео­фонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

^ Разрядность АЦП и ЦАП определяет разрядность пред­ставления цифрового сигнала (8, 16 или 18 бит).

Full Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одно­временно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое ка­чество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, на­пример, при проведении телеконференций, когда высокое каче­ство звука не требуется.

Модуль синтезатора

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рисунке 14.

Синтезирование представляет собой процесс воссоздания струк­туры музыкального тона (ноты). Звуковой сигнал любого музыкаль­ного инструмента имеет несколько временных фаз. На рисунке 15, а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сиг­нала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музы­кального инструмента. Длительность атаки для разных музы­кальных инструментов изменяется от единиц до нескольких де­сятков или даже до сотен миллисекунд. В фазе, называемой под­держкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим обра­зом. Цифровое устройство, использующее один из методов синте­за, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные ха­рактеристики, максимально близкие к характеристикам имити­руемого музыкального инструмента в фазе поддержки, как пока­зано на рисунке 15, б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения (хо-рус). Далее производятся цифроаналоговое преобразование и фильт­рация сигнала с помощью фильтра низких частот (ФНЧ).


Рисунок 15 - Принцип действия современного синтезатора: а - фазы звукового сигнала; 6 - схема синтезатора
Основные характеристики модуля синтезатора:


  1. метод синтеза звука;

  2. объем памяти;

  3. возможность аппаратной обработки сигнала для создания зву­ковых эффектов;

  4. полифония - максимальное число одновременно воспроиз­водимых элементов звуков.
Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, гене­рирующие звук с использованием следующих методов.

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis - FM-синтез) предполагает исполь­зование для генерации голоса музыкального инструмента как ми­нимум двух генераторов сигналов сложной формы. Генератор не­сущей частоты формирует сигнал основного тона, частотно-мо­дулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генера­тор огибающей управляет амплитудой результирующего сигнала. FM-генератор обеспечивает приемлемое качество звука, отлича­ется невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis - WT-синтез) производится путем использования пред­варительно оцифрованных образцов звучания реальных музыкаль­ных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегриро­ванной в микросхему памяти WT-генератора. WT-синтезатор обес­печивает генерацию звука с высоким качеством. Этот метод син­теза реализован в современных звуковых картах.

^ Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов па­мяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект процессора, который может быть либо самостоя­тельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-синтезом эффекты реверберации и хоруса стали стандартными. Синтез звука на основе физического моделирования предусматривает использование математических моделей звуко­образования реальных музыкальных инструментов для генера­ции в цифровом виде и для дальнейшего преобразования в зву­ковой сигнал с помощью ЦАП. Звуковые карты, использую­щие метод физического моделирования, пока не получили широкого распространения, поскольку для их работы требует­ся мощный ПК.

Модуль интерфейсов обеспечивает обмен данными между звуко­вой системой и другими внешними и внутренними устройствами.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет пере­давать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между зву­ковой системой и CPU.

MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стан­дартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание поряд­ка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд мож­но управлять светотехнической аппаратурой, видеооборудовани­ем в процессе выступления музыкальной группы на сцене. Уст­ройства с MIDI-интерфейсом соединяются последовательно, об­разуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть исполь­зован как ПК, так и музыкальный клавишный синтезатор, а так­же ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью спе­циального MIDI-адаптера, который имеет три MIDI-порта: вво­да, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

^ В состав звуковой карты входит интерфейс для подключения приводов CD-ROM

Модуль микшера

Модуль микшера звуковой карты выполняет:


  1. коммутацию (подключение/отключение) источников и при­емников звуковых сигналов, а также регулирование их уровня;

  2. микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.
К числу основных характеристик модуля микшера относятся:

  1. число микшируемых сигналов на канале воспроизведения;

  2. регулирование уровня сигнала в каждом микшируемом ка­нале;

  3. регулирование уровня суммарного сигнала;

  4. выходная мощность усилителя;

  5. наличие разъемов для подключения внешних и внутренних
    приемников/источников звуковых сигналов.
Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Вне­шние разъемы звуковой системы обычно находятся на задней па­нели корпуса системного блока: Joystick/MIDI - для подключе­ния джойстика или MIDI-адаптера; MicIn - для подключения микрофона; LineIn - линейный вход для подключения любых источников звуковых сигналов; LineOut - линейный выход для подключения любых приемников звуковых сигналов; Speaker - для подключения головных телефонов (наушников) или пассив­ной акустической системы.

Программное управление микшером осуществляется либо сред­ствами Windows, либо с помощью программы-микшера, поставля­емой в комплекте с программным обеспечением звуковой карты.

Совместимость звуковой системы с одним из стандартов зву­ковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы со­вместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

^ Стандарт Windows Sound System (WSS) фирмы Microsoft вклю­чает звуковую карту и пакет программ, ориентированный в ос­новном на бизнес-приложения.

Акустическая система (АС) непосредственно преобразует зву­ковой электрический сигнал в акустические колебания и являет­ся последним звеном звуковоспроизводящего тракта. В состав АС, как правило, входят несколько звуковых коло­нок, каждая из которых может иметь один или несколько дина­миков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуко­вые каналы.

Как правило, принцип действия и внутреннее устройство зву­ковых колонок бытового назначения и используемых в техниче­ских средствах информатизации в составе акустической системы PC практически не различаются.

В основном АС для ПК состоит из двух звуковых колонок, ко­торые обеспечивают воспроизведение стереофонического сигна­ла. Обычно каждая колонка в АС для ПК имеет один динамик, однако в дорогих моделях используются два: для высоких и низ­ких частот. При этом современные модели акустических систем позволяют воспроизводить звук практически во всем слышимом частотном диапазоне благодаря применению специальной конст­рукции корпуса колонок или громкоговорителей.

Для воспроизведения низких и сверхнизких частот с высоким качеством в АС помимо двух колонок используется третий звуко­вой агрегат - сабвуфер (Subwoofer), устанавливаемый под ра­бочим столом. Такая трехкомпонентная АС для ПК состоит из двух так называемых сателлитных колонок, воспроизводящих средние и высокие частоты (примерно от 150 Гц до 20 кГц), и сабвуфера, воспроизводящего частоты ниже 150 Гц.

Отличительная особенность АС для ПК - возможность нали­чия собственного встроенного усилителя мощности. АС со встро­енным усилителем называется активной. Пассивная АС усилителя не имеет.

Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание ак­тивной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанав­ливаемого в корпус одной из колонок.

Выходная мощность акустических систем для ПК может изме­няться в широком диапазоне и зависит от технических характе­ристик усилителя и динамиков. Если система предназначена для озвучивания компьютерных игр, достаточно мощности 15 - 20 Вт на колонку для помещения средних размеров. При необходимо­сти обеспечения хорошей слышимости во время лекции или пре­зентации в большой аудитории возможно использовать одну АС, имеющую мощность до 30 Вт на канал. С увеличением мощности АС увеличиваются ее габаритные размеры и повышается сто­имость.

^ Основные характеристики АС: полоса воспроизводимых час­тот, чувствительность, коэффициент гармоник, мощность.

Полоса воспроизводимых частот (FrequencyRespon­se) - это амплитудно-частотная зависимость звукового давления, или зависимость звукового давления (силы звука) от частоты пе­ременного напряжения, подводимого к катушке динамика. Поло­са частот, воспринимаемых ухом человека, находится в диапазо­не от 20 до 20 000 Гц. Колонки, как правило, имеют диапазон, ограниченный в области низких частот 40 - 60 Гц. Решить пробле­му воспроизведения низких частот позволяет использование сабвуфера.

Чувствительность звуковой колонки (Sensitivity) характеризуется звуковым давлением, которое она создает на рас­стоянии 1 м при подаче на ее вход электрического сигнала мощ­ностью 1 Вт. В соответствии с требованиями стандартов чувстви­тельность определяется как среднее звуковое давление в опреде­ленной полосе частот.

Чем выше значение этой характеристики, тем лучше АС пере­дает динамический диапазон музыкальной программы. Разница между самыми «тихими» и самыми «громкими» звуками совре­менных фонограмм 90 - 95 дБ и более. АС с высокой чувствитель­ностью достаточно хорошо воспроизводят как тихие, так и гром­кие звуки.

Коэффициент гармоник (Total Harmonic Distortion - THD) оценивает нелинейные искажения, связанные с появлени­ем в выходном сигнале новых спектральных составляющих. Коэффициент гармоник нормируется в нескольких диапазонах частот. Например, для высококачественных АС класса Hi-Fi этот коэф­фициент не должен превышать: 1,5% в диапазоне частот 250 - 1000 Гц; 1,5 % в диапазоне частот 1000 - 2000 Гц и 1,0 % в диапа­зоне частот 2000 - 6300 Гц. Чем меньше значение коэффициента гармоник, тем качественнее АС.

Электрическая мощность (Power Handling), которую выдерживает АС, является одной из основных характеристик. Од­нако нет прямой взаимосвязи между мощностью и качеством вос­произведения звука. Максимальное звуковое давление зависит скорее, от чувствительности, а мощность АС- в основном опреде­ляет ее надежность.

Часто на упаковке АС для ПК указывают значение пиковой мощности акустической системы, которая не всегда отражает ре­альную мощность системы, поскольку может превышать номи­нальную в 10 раз. Вследствие существенного различия физических процессов, происходящих при испытаниях АС, значения элек­трических мощностей могут отличаться в несколько раз. Для срав­нения мощности различных АС необходимо знать, какую именно мощность указывает производитель продукции и какими метода­ми испытаний она определена.

Некоторые модели колонок фирмы Microsoft подключаются не к звуковой карте, а к порту USB. В этом случае звук поступает на колонки в цифровом виде, а его декодирование производят не­большой Chipset, установленный в колонках.
Вопросы для самоконтроля:


  1. Состав звуковой подсистемы ПК;

  2. Модуль записи и воспроизведения;

  3. Модуля синтезатора;

  4. Модуль интерфейсов;

  5. Модуль микшера;

  6. Принцип работы и технические характеристики акустических систем. Программное обеспечение;

  7. Форматы звуковых файлов;

  8. Средства распознавания речи.

Практическая работа 8. Звуковая система ПК
Студент должен:
иметь представление:


  • о звуковой системе ПК

знать:


  • принципы обработки звуковой информации;

  • состав звуковой подсистемы ПК;

  • основные характеристики звуковых плат

уметь:


  • подключать и настраивать звуковые подсистемы ПК;

  • производить запись звуковых файлов.

Раздел 7. Устройства вывода информации на печать
Тема 7.1 Принтер
Студент должен:
иметь представление:


  • об устройствах вывод информации на печать

знать:


  • принцип работы устройств вывода информации на печать матричного принтера. Основные узлы и особенности эксплуатации, технические характеристики;

  • принцип работы устройств вывода информации на печать струйного принтера Основные узлы и особенности эксплуатации, технические характеристики;

  • принцип работы устройств вывода информации на печать лазерного принтера Основные узлы и особенности эксплуатации, технические характеристики.

Общие характеристики устройств вывода на печать. Классификация печатающих устройств. Принтеры ударного типа: принцип действия, механические узлы, особенности работы, технические характеристики, правила эксплуатации. Основные современные модели.

^ Струйные принтеры: принцип действия, механические узлы, особенности работы, технические характеристики, правила эксплуатации. Основные современные модели.

Лазерные принтеры: принцип действия, механические узлы, особенности работы, технические характеристики, правила эксплуатации. Основные современные модели.
Методические указания
Принтеры - устройства вывода данных из ЭВМ, преобразующие информационные ASCII-коды в соответствующие им графические символы и фиксирующие эти символы на бумаге.

Классификацию принтеров можно выполнить по целому ряду характеристик:


  1. способу формирования символов (знакопечатающие и знак о синтезирующие);

  2. цветности (черно-белые и цветные);

  3. способу формирования строк (последовательные и параллельные);

  4. способу печати (посимвольные, построчные и постраничные)

  5. скорости печати;

  6. разрешающей способности.
Принтеры обычно работают в двух режимах: текстовом и графическом.

При работе в текстовом режиме принтер принимает от компьютера коды символов, которые необходимо распечатать из знаки генератора самого принтера. Многие изготовители оборудуют свои принтеры большим количеством встроенных шрифтов. Эти шрифты записаны в ROM принтера и считываются только оттуда.

Для печати текстовой информации существуют режимы печати, обеспечивающие различное качество:


  • черновая печать (Draft);

  • типографское качество печати (NLQ - Near Letter Quality);

  • качество печати, близкое к типографскому (LQ - Letter Quality);

  • высококачественный режим (SQL - Super Letter Quality).
В графическом режиме на принтер направляются коды, опреде­ляющие последовательности и местоположение точек изображе­нии.

По способу нанесения изображения на бумагу принтеры подразделяются на принтеры ударного действия, струйные, фотоэлектронные и термические.

Звуковая система ПК – это комплекс программно-аппаратных средств, выполняющих следующие функции:

Конструктивно звуковая система ПК представляет собой звуковые карты, устанавливаемые в слот , либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.

Классическая звуковая система ПК содержит:

  • модуль записи и воспроизведения звука;
  • модуль синтезатора;
  • модуль интерфейсов;
  • модуль микшера;
  • акустическую систему.

Первые четыре модуля, как правило, устанавливают на звуковой карте. Каждый из модулей может быть выполнен в виде микросхемы, либо входить в состав многофункциональной микросхемы.

Диаграмма Звуковая система пк

Рисунок – Структура звуковой подсистемы ПК

  1. Модуль записи/воспроизведения осуществляет аналогово-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных по каналам DMA (Direct Memory Access – канал прямого доступа к памяти).
  2. Модуль синтезатора позволяет генерировать практически любые звуки, в том числе звучание реальных музыкальных инструментов.

Рисунок 2 – Схема современного синтезатора

Звук создаётся следующим образом. Цифровое устройство генерирует так называемый сигнал возбуждения с заданной высотой звука, который должен иметь спектральные характеристики, близкие к характеристикам имитируемого музыкального инструмента. Далее сигнал поступает на фильтр, имитирующий амплитудно-частотную характеристику этого инструмента. На другой вход подаётся сигнал амплитудной огибающей того же инструмента. Затем совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов (эхо и др.). Затем производят цифроаналоговое преобразование и фильтрацию сигнала с помощью фильтра низких частот (ФНЧ).

Основные характеристики модуля синтезатора:

  • метод синтеза звука : на основе частотной модуляции, на основе таблиц волн, на основе физического модулирования;
  • объём памяти ;
  • возможность аппаратной обработки сигнала для создания звуковых эффектов;
  • полифония – максимальное число одновременно воспроизводимых элементов звука.
  1. Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.
  1. Модуль микшера звуковой карты выполняет:
  • коммутацию (подключение/отключение) источников и приёмников звуковых сигналов, а также регулирование их уровня;
  • микширование нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

Основные характеристики:

  • число микшируемых сигналов на канале воспроизведения;
  • регулирование уровня сигнала в каждом микшируемом канале;
  • регулирование уровня суммарного сигнала;
  • выходная мощность усилителя;
  • наличие разъёмов для подключения внешних и внутренних приёмников/источников звуковых сигналов.

Программное обеспечение управления микшером осуществляется либо средствами Windows, либо с помощью специального программного обеспечения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство просвещения ПМР

ГОУ «Тираспольский Техникум Информатики и Права»

Дипломная работа

Тема: Исследование звуковой системы ПК с помощью диодной пластины

г. Тирасполь

Введение

Глава 1. Теоретическая часть. Исследование звуковой системы ПК с помощью диодной пластины

1.1 Аналитический обзор по теме

1.2 Практическая часть

1.2.1 Структурная схема приемо-передающего устройства для беспроводной передачи сигнала

1.2.2 Выбор элементной базы для построения устройства для исследования звуковой системы ПК

1.2.3 Принцип работы устройства для исследования звуковой системы ПК

1.2.4 Применение устройства

Глава 2. Охрана труда. Меры безопасности при техническом обслуживании средств вычислительной техники

2.1 Производственная санитария и гигиена труда

2.2 Требования к организации и оборудованию рабочего места техника

2.3 Требования пожарной безопасности

Заключение

Список использованной литературы

Введение

Традиционным способом передача звука от звуковой карты ПК на усилитель колонок осуществляется с помощью кабелей. В дипломном проекте рассмотрена беспроводная передача звука по лазерному лучу на расстояние до нескольких метров.

Данная работа является актуальной, так как звуковая система существенно расширяет возможности ПК как технического средства информатизации. Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.

Целью данной дипломной работы является исследование схемотехнических решений устройств для исследований работы звуковой системы ПК, разработка структурной и принципиальной схемы, изготовление макета.

Для реализации поставленных целей нужно решить следующие задачи:

рассмотреть литературных данных по теме диплома, провести исследования по данной тематике (разработать схемы, спроектировать устройство, проанализировать рабочие характеристики устройства), привести инженерные расчеты данного разрабатываемого устройства.

Целью охраны труда является научный анализ условий труда, технологических процессов, аппаратуры и оборудования с точки зрения возможности возникновения появления опасных факторов, выделение вредных производственных веществ. На основе такого анализа определяются опасные участки производства, возможные аварийные ситуации и разрабатываются мероприятия по их устранению или ограничение последствий.

Изучение и решение проблем, связанных с обеспечением здоровых и безопасных условий, в которых протекает труд человека - одна из наиболее важных задач в разработке новых технологий и систем производства.

Изучение и выявление возможных причин производственных несчастных случаев, профессиональных заболеваний, аварий, взрывов, пожаров, и разработка мероприятий и требований, направленных на устранение этих причин позволяют создать безопасные и благоприятные условия для труда человека. Комфортные и безопасные условия труда - один из основных факторов, влияющих на производительность и безопасность труда, здоровье человека.

Глава 1. Теоретическая часть. Исследование звуковой системы ПК с помощью диодной пластины

1.1 Аналитический обзор по теме

Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического средства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

запись звуковых сигналов, поступающих от внешних источников, например, микрофона или магнитофона, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске;

воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (наушников);

воспроизведение звуковых компакт-дисков;

микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников;

одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex);

обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3D-Sound) звучания;

генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК, а также устройства записи и воспроизведения аудиоинформации (акустическую систему). Отдельные функциональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 1, содержит:

модуль записи и воспроизведения звука;

модуль синтезатора;

модуль интерфейсов;

модуль микшера;

акустическую систему.

Рис. 1 - Структура звуковой системы ПК

Первые четыре модуля, как правило, устанавливаются на звуковой карте. Причем существуют звуковые карты без модуля синтезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной микросхемы. Таким образом, Chipset звуковой системы может содержать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпевают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не меняются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».

МОДУЛЬ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ

Модуль записи и воспроизведения звуковой системы осуществляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в пространстве.

Запись звука - это сохранение информации о колебаниях звукового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и цифровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

Если при записи звука пользуются микрофоном, который преобразует непрерывный во времени звуковой сигнал в непрерывный во времени электрический сигнал, получают звуковой сигнал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке напряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать частоте колебаний звукового давления.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем, что ПК оперирует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая система, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обработки сигнала с помощью ПК необходимо обратное преобразование цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобразование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала представлена на рис. 2.

Рис. 2 - Схема аналого-цифрового преобразования звукового сигнала

Предварительно аналоговый звуковой сигнал поступает на аналоговый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсчетов аналогового сигнала с заданной периодичностью и определяется частотой дискретизации. Причем частота дискретизации должна быть не менее удвоенной частоты наивысшей гармоники (частотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного звукового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в большинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Рис. 3 - Дискретизация по времени и квантование по уровню аналогового сигнала

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигнала и преобразование его в дискретный по времени и амплитуде. На рис. 3 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.

Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при квантовании зависит от количества разрядов кодового слова. Если значения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений кодовых слов будет равно 2N. Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максимальное число градаций амплитуды (уровней квантования) составит 216= 65 536. Для 8-разрядного представления соответственно получим 28 = 256 градаций амплитуды.

Аналого-цифровое преобразование осуществляется специальным электронным устройством - аналого-цифровым преобразователем (АЦП), в котором дискретные отсчеты сигнала преобразуются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелательные высокочастотные помехи, для фильтрации которых полученные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 4. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой дискретизации. На втором этапе из дискретных отсчетов путем сглаживания (интерполяции) формируется непрерывный аналоговый сигнал с помощью фильтра низкой частоты, который подавляет периодические составляющие спектра дискретного сигнала.

Рис. 4 - Схема цифроаналогового преобразования

Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, стереофонический звуковой сигнал длительностью 60 с, оцифрованный с частотой дискретизации 44,1 кГц при 16-разрядном квантовании для хранения требует на винчестере около 10 Мбайт.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, используют компрессию (сжатие), заключающуюся в уменьшении количества отсчетов и уровней квантования или числа бит, приходящихся на один отсчет.

Подобные методы кодирования звуковых данных с использованием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия- кодеков (кодирование-декодирование), поставляемых вместе с программным обеспечением звуковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения цифрового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являются: частота дискретизации; тип и разрядность АЦП и ЦАП; способ кодирования аудиоданных; возможность работы в режиме Full Duplex.

Частота дискретизации определяет максимальную частоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; музыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стереофонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность представления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звучания. Некоторые звуковые карты оснащаются 20- и даже 24-разрядными АЦП и ЦАП, что существенно повышает качество записи/воспроизведения звука.

Full Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одновременно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое качество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, например, при проведении телеконференций, когда высокое качество звука не требуется.

МОДУЛЬ СИНТЕЗАТОРА

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рис. 5.

Рис. 5 - Принцип действия современного синтезатора: а - фазы звукового сигнала; б - схема синтезатора

Синтезирование представляет собой процесс воссоздания структуры музыкального тона (ноты). Звуковой сигнал любого музыкального инструмента имеет несколько временных фаз. На рис. 5а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сигнала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музыкального инструмента. Длительность атаки для разных музыкальных инструментов изменяется от единиц до нескольких десятков или даже до сотен миллисекунд. В фазе, называемой поддержкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим образом. Цифровое устройство, использующее один из методов синтеза, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные характеристики, максимально близкие к характеристикам имитируемого музыкального инструмента в фазе поддержки, как показано на рис. 5 б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения (хо-рус). Далее производятся цифроаналоговое преобразование и фильтрация сигнала с помощью фильтра низких частот (ФНЧ). Основные характеристики модуля синтезатора:

метод синтеза звука;

объем памяти;

возможность аппаратной обработки сигнала для создания зву ковых эффектов;

полифония - максимальное число одновременно воспроизводимых элементов звуков.

Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, генерирующие звук с использованием следующих методов.

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis - FM-синтез) предполагает использование для генерации голоса музыкального инструмента как минимум двух генераторов сигналов сложной формы. Генератор несущей частоты формирует сигнал основного тона, частотно-модулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генератор огибающей управляет амплитудой результирующего сигнала. FM-генератор обеспечивает приемлемое качество звука, отличается невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis - WT-синтез) производится путем использования предварительно оцифрованных образцов звучания реальных музыкальных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегрированной в микросхему памяти WT-генератора. WT-синтезатор обеспечивает генерацию звука с высоким качеством. Этот метод синтеза реализован в современных звуковых картах.

Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов памяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект-процессора, который может быть либо самостоятельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-син-тезом эффекты реверберации и хоруса стали стандартными.

Синтез звука на основе физического моделирования предусматривает использование математических моделей звукообразования реальных музыкальных инструментов для генерации в цифровом виде и для дальнейшего преобразования в звуковой сигнал с помощью ЦАП. Звуковые карты, использующие метод физического моделирования, пока не получили широкого распространения, поскольку для их работы требуется мощный ПК.

МОДУЛЬ ИНТЕРФЕЙСОВ

Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.

Интерфейс ISA в 1998 г. был вытеснен в звуковых картах интерфейсом PCI.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет передавать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между звуковой системой и CPU.

MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стандартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание порядка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд можно управлять светотехнической аппаратурой, видеооборудованием в процессе выступления музыкальной группы на сцене. Устройства с MIDI-интерфейсом соединяются последовательно, образуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть использован как ПК, так и музыкальный клавишный синтезатор, а также ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью специального MIDI-адаптера, который имеет три MIDI-порта: ввода, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

В состав звуковой карты входит интерфейс для подключения приводов CD-ROM.

МОДУЛЬ МИКШЕРА

Модуль микшера звуковой карты выполняет:

коммутацию (подключение/отключение) источников и приемников звуковых сигналов, а также регулирование их уровня;

микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

К числу основных характеристик модуля микшера относятся:

число микшируемых сигналов на канале воспроизведения;

регулирование уровня сигнала в каждом микшируемом канале;

регулирование уровня суммарного сигнала;

выходная мощность усилителя;

наличие разъемов для подключения внешних и внутренних
приемников/источников звуковых сигналов.

Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Внешние разъемы звуковой системы обычно находятся на задней панели корпуса системного блока: Joystick/MIDI - для подключения джойстика или MIDI-адаптера; Mic In - для подключения микрофона; Line In - линейный вход для подключения любых источников звуковых сигналов; Line Out - линейный выход для подключения любых приемников звуковых сигналов; Speaker - для подключения головных телефонов (наушников) или пассивной акустической системы.

Программное управление микшером осуществляется либо средствами Windows, либо с помощью программы-микшера, поставляемой в комплекте с программным обеспечением звуковой карты.

Совместимость звуковой системы с одним из стандартов звуковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы совместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

Стандарт Windows Sound System (WSS) фирмы Microsoft включает звуковую карту и пакет программ, ориентированный в основном на бизнес-приложения.

АКУСТИЧЕСКАЯ СИСТЕМА

Акустическая система (АС) непосредственно преобразует звуковой электрический сигнал в акустические колебания и является последним звеном звуковоспроизводящего тракта.

В состав АС, как правило, входят несколько звуковых колонок, каждая из которых может иметь один или несколько динамиков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуковые каналы.

Например, стереофонический сигнал содержит два компонента - сигналы левого и правого стереоканалов, что требует не менее двух колонок в составе стереофонической акустической системы. Звуковой сигнал в формате Dolby Digital содержит информацию для шести звуковых каналов: два фронтальных стереоканала, центральный канал (канал диалогов), два тыловых канала и канал сверхнизких частот. Следовательно, для воспроизведения сигнала Dolby Digital акустическая система должна иметь шесть звуковых колонок.

Как правило, принцип действия и внутреннее устройство звуковых колонок бытового назначения и используемых в технических средствах информатизации в составе акустической системы PC практически не различаются.

В основном АС для ПК состоит из двух звуковых колонок, которые обеспечивают воспроизведение стереофонического сигнала. Обычно каждая колонка в АС для ПК имеет один динамик, однако в дорогих моделях используются два: для высоких и низких частот. При этом современные модели акустических систем позволяют воспроизводить звук практически во всем слышимом частотном диапазоне благодаря применению специальной конструкции корпуса колонок или громкоговорителей.

Для воспроизведения низких и сверхнизких частот с высоким качеством в АС помимо двух колонок используется третий звуковой агрегат - сабвуфер (Subwoofer), устанавливаемый под рабочим столом. Такая трехкомпонентная АС для ПК состоит из двух так называемых сателлитных колонок, воспроизводящих средние и высокие частоты (примерно от 150 Гц до 20 кГц), и сабвуфера, воспроизводящего частоты ниже 150 Гц.

Отличительная особенность АС для ПК - возможность наличия собственного встроенного усилителя мощности. АС со встроенным усилителем называется активной. Пассивная АС усилителя не имеет.

Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание активной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанавливаемого в корпус одной из колонок.

Выходная мощность акустических систем для ПК может изменяться в широком диапазоне и зависит от технических характеристик усилителя и динамиков. Если система предназначена для озвучивания компьютерных игр, достаточно мощности 15 - 20 Вт на колонку для помещения средних размеров. При необходимости обеспечения хорошей слышимости во время лекции или презентации в большой аудитории возможно использовать одну АС, имеющую мощность до 30 Вт на канал. С увеличением мощности АС увеличиваются ее габаритные размеры и повышается стоимость.

Современные модели акустических систем имеют гнездо для головных телефонов, при подключении которых воспроизведение звука через колонки автоматически прекращается.

Основные характеристики АС:

полоса воспроизводимых частот,

чувствительность,

коэффициент гармоник,

мощность.

Полоса воспроизводимых частот (FrequencyResponse) - это амплитудно-частотная зависимость звукового давления, или зависимость звукового давления (силы звука) от частоты переменного напряжения, подводимого к катушке динамика. Полоса частот, воспринимаемых ухом человека, находится в диапазоне от 20 до 20 000 Гц. Колонки, как правило, имеют диапазон, ограниченный в области низких частот 40 - 60 Гц. Решить проблему воспроизведения низких частот позволяет использование сабвуфера.

Чувствительность звуковой колонки (Sensitivity) характеризуется звуковым давлением, которое она создает на расстоянии 1 м при подаче на ее вход электрического сигнала мощностью 1 Вт. В соответствии с требованиями стандартов чувствительность определяется как среднее звуковое давление в определенной полосе частот.

Чем выше значение этой характеристики, тем лучше АС передает динамический диапазон музыкальной программы. Разница между самыми «тихими» и самыми «громкими» звуками современных фонограмм 90 - 95 дБ и более. АС с высокой чувствительностью достаточно хорошо воспроизводят как тихие, так и громкие звуки.

Коэффициент гармоник (Total Harmonic Distortion - THD) оценивает нелинейные искажения, связанные с появлением в выходном сигнале новых спектральных составляющих. Коэффициент гармоник нормируется в нескольких диапазонах частот. Например, для высококачественных АС класса Hi-Fi этот коэффициент не должен превышать: 1,5% в диапазоне частот 250 - 1000 Гц; 1,5 % в диапазоне частот 1000 - 2000 Гц и 1,0 % в диапазоне частот 2000 - 6300 Гц. Чем меньше значение коэффициента гармоник, тем качественнее АС.

Электрическая мощность (Power Handling), которую выдерживает АС, является одной из основных характеристик. Однако нет прямой взаимосвязи между мощностью и качеством воспроизведения звука. Максимальное звуковое давление зависит, скорее, от чувствительности, а мощность АС в основном определяет ее надежность.

Часто на упаковке АС для ПК указывают значение пиковой мощности акустической системы, которая не всегда отражает реальную мощность системы, поскольку может превышать номинальную в 10 раз. Вследствие существенного различия физических процессов, происходящих при испытаниях АС, значения электрических мощностей могут отличаться в несколько раз. Для сравнения мощности различных АС необходимо знать, какую именно мощность указывает производитель продукции и какими методами испытаний она определена.

Среди производителей высококачественных и дорогих АС - фирмы Creative, Yamaha, Sony, Aiwa. AC более низкого класса выпускают фирмы Genius, Altec, JAZZ Hipster.

Некоторые модели колонок фирмы Microsoft подключаются не к звуковой карте, а к порту USB. В этом случае звук поступает на колонки в цифровом виде, а его декодирование производит небольшой Chipset, установленный в колонках.

МЕТОДЫ СЖАТИЯ ЗВУКОВОЙ ИНФОРМАЦИИ

Простейший способ цифрового представления сигналов называется импульсно-кодовой модуляцией (ИКМ) или РСМ (Pulse-Code Modulation). Поток данных РСМ представляет собой последовательность мгновенных значений или выборок (samples) в двоичном коде. Если применяемые преобразователи имеют линейную характеристику (мгновенное значение напряжения сигнала пропорционально коду), то данная модуляция называется линейной (Linear PCM). В случае ИКМ кодер и декодер не выполняют преобразования информации, а только занимаются упаковкой/распаковкой бит в байты и слова данных. Интенсивность потока (bit rate) определяется как произведение частоты дискретизации (sample rate) на разрядность и на число каналов. Аудио-CD дает поток 44 100 х16х2= 1411 200 бит/с (стерео).

Для реальных звуковых сигналов кодирование с линейной ИКМ является неэкономичным. Поток данных можно сократить, если использовать несложный алгоритм сжатия, применяемый в системе дельта-ИКМ (ДИКМ), она же DPCM (Differential Pulse-Code Modulation). Упрощенно этот алгоритм выглядит так: в цифровом потоке передаются не сами мгновенные отсчеты, а масштабированная разность реального отсчета и его значения, сконструированного кодеком по ранее сгенерированному им потоку данных. Разность передается с меньшим числом разрядов, чем сами отсчеты. В АДИКМ (адаптивная | ДИКМ, или ADPCM - Adaptive Differential Pulse-Code Modulation) масштаб разности определяется по предыстории - если разность монотонно растет, маcштаб увеличивается, и наоборот.

Конечно, восстановленный сигнал при таком представлении будет больше отличаться от исходного, чем при обычной ИКМ, но можно добиться существенного сокращения потока цифровых данных. ADPCM стала широко применяться при цифровом хранении и передаче аудиоинформации (например, в голосовых модемах). Алгоритм ADPCM с точки зрения процессора PC может быть реализован как программно, так и аппаратно средствами звуковой карты (модема).

Более сложные алгоритмы и высокая степень сжатия применяются в аудио- -кодеках MPEG. В кодере MPEG-1 входным потоком являются 16-битные выборки с частотой 48 кГц (профессиональная аудиотехника), 44,1 кГц (бытовая техника) или 32 кГц (применяется в телекоммуникациях).

Стандарт определяет три «слоя» (layer) сжатия - Layer I, Layer 2 и Layer 3, работающие один поверх другого.

Первоначальная компрессия осуществляется на основе психофизических свойств звуковосприятия. Здесь обыгрывается свойство маскирования звуков: если в сигнале имеются два тона с близкими частотами, существенно различающиеся по уровню, то более мощный сигнал замаскирует слабый (он не будет услышан). Пороги маскирования зависят от удаленности частот.

В MPEG весь диапазон звуковых частот разбивается на 32 поддиапазона (sub-band), в каждом поддиапазоне определяются наиболее мощные спектральные составляющие и для них вычисляются пороги частот маскирования. Эффекты маскирования от нескольких мощных составляющих суммируются. Действие маскирования распространяется не только на сигналы, присутствующие одновременно с мощным, но и на предшествующие ему за 2-5 мс (premasking) и последующие в течение до 100 мс (postmasking). Сигналы маскированных областей обрабатываются с меньшим разрешением, поскольку для них снижаются требования к отношению сигнал/шум. За счет этого «загрубления» и происходит сжатие. Компрессию на психофизической основе выполняет слой Layer 1.

Следующий этап (Layer 2) повышает точность представления и более эффективно упаковывает информацию. Здесь у кодера в работе находится «окно» длительностью 23 мс (1152 выборки).

На последнем этапе (Layer 3) применяются сложные наборы фильтров и нелинейное квантование. Наибольшую степень сжатия обеспечивает слой Layer 3, для которого при высокой достоверности декодирования достигается коэффициент сжатия 11:1.

МЕТОДЫ ОБРАБОТКИ ЗВУКОВОЙ ИНФОРМАЦИИ

При цифровом хранении легко реализуются многие эффекты, которые ранее требовали громоздких электромеханических или электроакустических устройств или сложной аналоговой электроники.

Известно, что в закрытом помещении (например, зале) от источника до слушателя доходит не только прямой звук, но и отраженный (многократно) от различных поверхностей (стен, колонн и т. п.). Отраженные сигналы приходят относительно прямого с различными задержками и затуханием. Это явление называется реверберацией. И Этим явлением при цифровой обработке сигнала можно управлять. При цифровом хранении легко реализуются многие эффекты, которые ранее требовали громоздких электромеханических или электроакустических устройств или сложной аналоговой электроники.

Прежде всего, это искусственная реверберация и эхо.

Известно, что в закрытом помещении (например, зале) от источника до слушателя доходит не только прямой звук, но и отраженный (многократно) от различных поверхностей (стен, колонн и т. п.). Отраженные сигналы приходят относительно прямого с различными задержками и затуханием. Это явление называется реверберацией. И Этим явлением при цифровой обработке сигнала можно управлять.

На основе смещения выборок можно делать и более сложные эффекты. В цифровой форме представления легко имитируется эффект Допплера - изменение частоты при быстром приближении источника звука к слушателю или удалении источника от слушателя. С этим эффектом сталкивались все - однотонный свисток приближающегося поезда звучит выше, а удаляющегося - ниже реального тона. В цифровом виде при воспроизведении накопление отставания выборок приведет к понижению тона, а сокращение отставания - к повышению.

Кроме фокусов с задержками возможно использование цифровой фильтрации - от реализации простейших темброблоков и эквалайзеров до «вырезания» голоса из песни (эффект «караоке»). Все определяется программным обеспечением и вычислительными ресурсами процессора.

НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ЗВУКОВОЙ СИСТЕМЫ

В настоящее время фирмы Intel, Compaq и Microsoft предложили новую архитектуру звуковой системы ПК. Согласно этой архитектуре модули обработки звуковых сигналов выносятся за пределы корпуса ПК, в котором на них действуют электрические помехи, и размещаются, например, в колонках акустической системы. В этом случае звуковые сигналы передаются в цифровой форме, что значительно повышает их помехозащищенность и качество воспроизведения звука. Для передачи цифровых данных в цифровой форме предусматривается использование высокоскоростных шин USB и IEEE 1394.

Еще одним направлением совершенствования звуковой системы является создание объемного (пространственного) звука, называемого трехмерным, или 3D-Sound (Three Dimentional Sound). Для получения объемного звучания производится специальная обработка фазы сигнала: фазы выходных сигналов левого и правого каналов сдвигаются относительно исходного. При этом используется свойство мозга человека определять положение источника звука путем анализа соотношения амплитуд и фаз звукового сигнала, воспринимаемого каждым ухом. Пользователь звуковой системы, оборудованной специальным модулем обработки 3D-звука, ощущает эффект «перемещения» источника звука.

Новым направлением применения мультимедийных технологий является создание домашнего театра на базе ПК (PC-Theater), т.е. варианта мультимедийного ПК, предназначенного одновременно нескольким пользователям для наблюдения за игрой, просмотра образовательной программы или фильма в стандарте DVD. PC-Theater в своем составе имеет специальную многоканальную акустическую систему, формирующую объемный звук (Surround Sound). Системы Surround Sound создают в помещении различные звуковые эффекты, причем пользователь ощущает, что он находится в центре звукового поля, а источники звука - вокруг него. Многоканальные звуковые системы Surround Sound используются в кинотеатрах и уже начинают появляться в виде устройств бытового назначения.

В многоканальных системах бытового назначения звук записывается на двух дорожках лазерных видеодисков или видеокассет по технологии Dolby Surround, разработанной фирмой Dolby Laboratories. К наиболее известным разработкам в этом направлении относятся:

Dolby (Surround) Pro Logic - четырехканальная звуковая система, содержащая левый и правый стереоканалы, центральный канал для диалогов и тыловой канал для эффектов.

Dolby Surround Digital - звуковая система, состоящая из 5 + 1 каналов: левого, правого, центрального, левого и правого каналов тыловых эффектов и канала сверхнизких частот. Запись сигналов для системы выполняется в виде цифровой оптической фонограммы на кинопленке.

В отдельных моделях акустических колонок помимо стандартных регуляторов высоких/низких частот, громкости и баланса имеются кнопки для включения специальных эффектов, например, 3D-звука, Dolby Surround и др.

1.2 Практическая часть

1.2.1 Структурная схема приемо-передающего устройства для беспроводной передачи сигнала

С ростом популярности беспроводных технологий расширяется и сфера их применения. В дипломной работе рассмотрено решение, построенное на принципе передачи медиаданных по беспроводным каналам и предназначенные для объединения ПК и компонентов бытовой аудиотехники в единый мультимедийный комплекс.

Время от времени у пользователей персональных компьютеров возникает необходимость подключить это устройство к стационарной аудиоаппаратуре, например к музыкальному центру. Конечно, наиболее простым вариантом в данном случае является подключение посредством кабеля. Однако у подавляющего большинства стационарных аудиокомпонентов разъемы для подключения источников сигнала располагаются на задней панели, добраться до которой обычно не так-то просто. Вторая, более серьезная проблема - отсутствие у многих недорогих магнитол и музыкальных центров входов для подключения внешних источников сигнала.

Одним из самых универсальных способов решения подобных проблем является использование маломощных радиопередатчиков, транслирующих звуковой сигнал в УКВ-диапазоне (возможность приема программ на этих частотах реализована практически во всех современных моделях магнитол и музыкальных центров). Стоит также отметить, что транслируемый подобным образом сигнал можно принимать сразу несколькими расположенными неподалеку радиоприемниками.

В случае взаимодействия цифрового плеера с аналоговой аппаратурой (магнитолами, музыкальными центрами и т.п.) передача звука в аналоговом виде является единственно возможным вариантом. Если же рассматривать взаимодействие двух цифровых устройств (например, компьютера и медиацентра), то в данном случае предпочтительнее использовать передачу звуковых данных по беспроводному каналу в цифровом виде.

Традиционным способом передача звука от звуковой карты вашего ПК на усилитель колонок осуществляется с помощью кабелей. В дипломном проекте рассмотрена беспроводная передача звука по лазерному лучу, на расстояние до нескольких метров.

На рис. 6 изображена структурная схема приемника аудио-сигнала:

Рис. 6 - Структурная схема приемника аудио-сигнала

На рис. 7 изображена структурная схема передатчика аудио-сигнала:

Рис. 7 - Структурная схема передатчика аудио-сигнала

Первичную обмотку непосредственно нужно подключить к выходу аудио сигнала. Минус аккумулятора подключаем к одному из концов вторичной обмотки, плюс аккумулятора подключаем напрямую к плюсу лазерного диода.

Второй конец вторичной обмотки через резистор 15-47 Ом подключаем к минусу лазерного диода.

1.2.2 Выбор элементной базы для построения устройства для исследования звуковой системы ПК

Для сбора устройства для беспроводной передачи сигнала необходимо следующее оборудование: источник аудио сигнала (персональный компьютер, музыкальный центр или мобильный телефон), сетевой трансформатор, мощностью 10-15 Вт, резистор от 5 до 20 Ом и аккумулятор.

Трансформатор можно использовать любой сетевой, мощность не более 20 Вт, содержащий вторичную обмотку на 6 или 12 В., либо намотать самому (первичная обмотка - 15 витков провода 0.8 мм., вторичная обмотка - 10 витков провода 0.8 мм.).

Для приемного устройства звукового сигнала понадобится фотодиод и усилитель низкой частоты.

Светодиод используется обычный. Его можно заменить лазером (значительно увеличит расстояние передачи), который нужно будет подключить через резистор 5 Ом., 0.5 Вт. Так же источник светового луча можно дополнить оптикой от DVD привода, тем самым сконцентрировать пучок света и увеличить расстояние передачи. Аккумулятор используется Li - Ion (литий - ионный) от мобильного телефона. Вместо него, можно использовать стабилизированный блок питания на 3.5 - 4 В., с силой тока не более 1 А. Параметры солнечного модуля: максимальное напряжение 14 В., при максимальном токе 100 мА. Модуль можно заменить любым другим фотоприемником.

1.2.3 Принцип работы устройства для исследования звуковой системы ПК

Из маломощного источника звука (персональный компьютер, мобильный телефон) подается звуковой сигнал на первичную обмотку трансформатора, выходит из вторичной обмотки, усиливается с помощью аккумулятора и поступает на светодиод / лазерный диод. Фотодиод, который служит приемником аудио сигнала, напрямую подключаем к входу усилителя мощности. Далее включаем музыку и направляем луч на фотоприемник. Луч света принимает солнечный модуль, который подключен к усилителю, а усилитель мощности усиливает слабый сигнал и в итоге получается достаточно качественный звук. Вместо лазера также можно применить обыкновенный светодиод, но в таком случае дальность передачи звукового сигнала будет не более 30 сантиметров, желательно применить белые или ультрафиолетовые светодиоды от зажигалок. При использовании лазерной указки, возможно передать звуковой сигнал на дистанцию до 15 метров, и заметьте качество звука достаточно хорошее. Передаваемый звук достаточно мощный на дистанции 7 метров, усилитель при полной громкости в нагрузку выдавал 80 процентов своей мощности.

Качество передаваемого сигнала довольно хорошее, искажение звука не наблюдается.

1.2.4 Применение устройства

Такое устройство нашло очень широкое применение в науке и технике, на основе именно такого передатчика и приемника основаны лазерные микрофоны для шпионажа.

Такой прибор отличный аксессуар для компьютера, например на компьютере играет музыка, а усилитель мощности не подключен кабелем к компьютеру, таким образом также можно передавать разговор, нужно просто подать на вход устройства сигнал от микрофона (с предварительным усилителем) и в итоге получается беспроводной телефон или рация, или отличный жучек для малых дистанций.

Глава 2. Охрана труда. Меры безопасности при техническом обслуживании средств вычислительной техники

2.1 Производственная санитария и гигиена труда

запись микшер сигнал передача

В соответствии с ГОСТ 12.0.002 ССБТ «Термины и определения» производственная санитария - система организационных, санитарно-гигиенических мероприятий, технических средств и методов, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов до значений, не превышающих допустимые.

В комплекс вопросов, решаемых в рамках производственной санитарии и гигиены труда, входят:

Обеспечение санитарно-гигиенических требований к воздуху рабочей зоны;

Обеспечение параметров микроклимата на рабочих местах;

Обеспечения нормативной естественной и искусственной освещенности;

Защита от шума и вибрации на рабочих местах;

Защита от ионизирующих излучений и электромагнитных полей;

Обеспечение спецпитанием, защитными пастами и мазями, спецодеждой и спец. обувью, средствами индивидуальной защиты (противогазы, респираторы и т.п.);

Обеспечение согласно норм санитарно-бытовыми помещениями и др.

Гигиена труда или профессиональная гигиена - раздел гигиены, изучающий воздействие трудового процесса и окружающей производственной среды на организм работающих с целью разработки санитарно-гигиенических и лечебно-профилактических нормативов и мероприятий, направленных на создание более благоприятных условий труда, обеспечение здоровья и высокого уровня трудоспособности человека.

В условиях промышленного производства на человека нередко воздействуют низкая и высокая температура воздуха, сильное тепловое излучение, пыль, вредные химические вещества, шум, вибрация, электромагнитные волны, а также самые разнообразные сочетания этих факторов, которые могут привести к тем или иным нарушениям в состоянии здоровья, к снижению работоспособности. Для предупреждения у устранения этих неблагоприятных воздействий и их последствий проводится изучение особенностей производственных процессов, оборудования и обрабатываемых материалов (сырье, вспомогательные, промежуточные, побочные продукты, отходы производства) с точки зрения их влияния на организм работающих; санитарных условий труда (метеорологические факторы, загрязнение воздуха пылью и газами, шум, вибрация, ультразвук и др.); характера и организации трудовых процессов, изменений физиологических функций в процессе работы.

Производственная санитария - система организационных, профилактических и санитарно-гигиенических мероприятий и средств, направленных на предотвращение воздействия на рабочих вредных производственных факторов.

Трудовая деятельность может выполняться на открытом воздухе и в помещениях.

Производственные помещения - замкнутые пространства в любых зданиях и сооружениях, где в течение рабочего времени постоянно или периодически осуществляется трудовая деятельность людей в различных видах производства. Человек может осуществлять работу в различных помещениях одного или нескольких зданий и сооружений. При таких условиях труда необходимо говорить о рабочем месте или рабочей зоне.

Производственная среда рабочего помещения определяется комплексом факторов. Наличие этих факторов (вредностей) в рабочей среде может повлиять не только на состояние организма, но и на производительность, качество, безопасность труда, привести к снижению работоспособности, вызвать функциональные изменения в организме и профессиональные заболевания.

В современных условиях автоматизации труда на организм действует комплекс слабо выраженных факторов, изучение аффекта взаимодействия крайне затруднено, поэтому, промсанитария и гигиена труда решают следующие задачи:

учет влияния факторов трудовой среды на здоровье и работоспособность;

совершенствование методов оценки работоспособности и состояния здоровья;

разработка организационно-технологических, инженерных, социально-экономических мероприятий по рационализации производственной среды;

разработка профилактических и оздоровительных мероприятий;

совершенствовать методику обучения.

Температура и влажность воздуха в помещении являются важнейшими параметрами, определяющими состояние комфорта внутри помещения.

Рекомендуемые значения температуры воздуха в помещении по различным стандартам находятся в пределах 20-22Со и 22-26Со. Еще один физический параметр внутренней атмосферы, непосредственно влияющий на теплообмен организма человека - это влажность воздуха, характеризующая его насыщенность водяными парами. Так недостаток влажности, менее 20 % относительной влажности, приводит к пересыханию слизистых оболочек, вызывает кашель. А превышение уровня влажности, более 65%, приводит к ухудшению теплоотдачи при испарении пота, возникает чувство удушья. Поэтому температура должна соотноситься с уровнем влажности.

Скорость воздуха определяется в рабочей зоне помещения, т.е. там, где находятся люди, а именно в пространстве от 0,15м. от пола до 1,8м по высоте и на расстоянии не менее 0,15м от стен. Скорость воздуха в рабочей зоне рекомендуется в пределах 0,13-0,25м/с. При меньшей скорости - душновато или даже жарковато, при большей - просто сквозняк, допускать который имеет смысл только при повышении температуры нормативных значений.

Анализ условий труда

Оценка условий труда проводится по специальной методике, на основе анализа уровней вредных и опасных факторов на данном рабочем месте.

Для проведения аттестации рабочего места также необходимо комплексно оценить условия труда.

Определение класса условий труда на рабочих местах проводится с целью:

установления приоритетности оздоровительных мероприятий;

создания банка данных по существующим условиям труда;

определения выплат и компенсаций за вредные условия труда.

Вредный производственный фактор - фактор среды и трудового процесса, который может вызвать снижение работоспособности, патологию (профессиональное заболевание), привести к нарушению здоровья потомства.

Вредными могут быть:

физические факторы: температура, влажность и подвижность воздуха, неионизирующие и ионизирующие излучения, шум, вибрация, недостаточная освещенность;

химические факторы: загазованность и запыленность воздуха;

биологические факторы: болезнетворные микроорганизмы;

факторы тяжести труда: физическая статическая и динамическая нагрузка; большое количество стереотипных рабочих движений, большое число наклонов корпуса, неудобная рабочая поза;

факторы напряженности труда: интеллектуальные, сенсорные, эмоциональные нагрузки, монотонность и продолжительность работы.

Опасный производственный фактор - фактор среды и трудового процесса, который может вызвать резкое ухудшение здоровья, травму, смерть.

Это: электрический ток, огонь, нагретая поверхность, движущиеся части оборудования, избыточное давление, острые кромки предметов, высота и.т.п.).

Подобные документы

    Выбор методов проектирования устройства обработки и передачи информации. Разработка алгоритма операций для обработки информации, структурной схемы устройства. Временная диаграмма управляющих сигналов. Элементная база для разработки принципиальной схемы.

    курсовая работа , добавлен 16.08.2012

    Устройства записи и воспроизведения информации - неотъемлемая часть ЭВМ. Процесс восстановления информации по изменениям характеристики носителя. Коэффициент детонации. Требования, предъявляемые к точности изготовления деталей механизма транспортировки.

    реферат , добавлен 13.11.2010

    Понятие звуковой экспликации. Особенности используемой технологии записи. Схемы расположения съемочного оборудования на съемочных площадках. Обоснование выбора оборудования. Структурная схема соединения оборудования с учетом выбранной синхронизации.

    курсовая работа , добавлен 27.12.2011

    Принципы построения радиосистемы "Стрелец". Модуль беспроводной передачи данных по технологии ZigBee, преимущества и недостатки его применения, принцип действия и оценка возможностей. Описание структурной и принципиальной электрической схемы устройства.

    дипломная работа , добавлен 24.04.2015

    Развитие носителей информации. Звукозапись и процесс записи звуковой информации с целью её сохранения и последующего воспроизведения. Музыкальные механические инструменты. Первый двухдорожечный магнитофон. Звук и основные стандарты его записи.

    реферат , добавлен 25.05.2015

    Методы создания передающего устройства для приемо-передающего модуля радиовысотомера. Технико-экономическое обоснование работы. Обеспечение безопасности персонала, работающего над проектом. Классификация производства по пожароопасности и взрывоопасности.

    дипломная работа , добавлен 15.07.2010

    Основные технические характеристики автоматизированного приемо-передающего центра. Общие сведения и принцип работы прибора. Автоматическое стопроцентное резервирование радиосредств. Способы вывода приемопередатчиков в излучение, контроль устройства.

    отчет по практике , добавлен 12.02.2016

    Алгоритмы цифровой обработки данных. Схема устройства светомузыкальной установки на примере микроконтроллера ATmega8. Подача, приём и обработка звукового сигнала. Разработка гальванической развязки. Копия сигнала, который подается на высоковольтную часть.

    курсовая работа , добавлен 02.12.2014

    Структурная схема устройства передачи данных и команд. Принцип действия датчика температуры. Преобразование сигналов, поступающих с четырех каналов. Модель устройства передачи данных. Построение кода с удвоением. Формирование кодовых комбинаций.

    курсовая работа , добавлен 28.01.2015

    Схема кодирования звуковой информации. Аналоговая и дискретная формы представления информации. Выделение количества уровней громкости в процессе кодирования звуковой информации. Качество двоичного кодирования звука. Расчет информационного объема.

Звуковые устройства становятся неотъемлемой частью каждого персонального компьютера. В процессе конкурентной борьбы был выработан универсальный, широко поддерживаемый стандарт звукового программного и аппаратного обеспечения. Звуковые устройства превратились из дорогих экзотических дополнений в привычную часть системы практически любой конфигурации.

В современных компьютерах аппаратная поддержка звука реализуется в одной из следующих форм:

  • аудиоадаптер, помещаемый в разъем шины PCI или ISA;
  • микросхема на системной плате, выпускаемая компаниями Crystal, Analog Devices, Sigmatel, ESS и др.;
  • звуковые устройства, интегрированные в базовый набор микросхем системной платы, к которым относятся наиболее современные наборы микросхем компаний Intel, SiS и VIA Technologies, созданные для недорогих компьютеров.

Кроме основного аудиоустройства, существует еще множество дополнительных аудиоустройств: акустические системы, микрофон и др. В данной главе рассматриваются функциональность и особенности работы всех компонентов аудиосистемы компьютера.

Первые звуковые платы появились в конце 1980-х гг. на базе разработок компаний AdLib, Roland и Creative Labs и использовались только для игр. В 1989 г. компания Creative Labs выпустила стереозвуковую плату Game Blaster; позднее появилась плата Sound Blaster Pro.

Для стабильного функционирования платы требовались определенные программные (MS DOS, Windows) и аппаратные ресурсы (IRQ, DMA и адреса порта ввода-вывода).

В связи с проблемами, возникающими в процессе применения звуковых плат, не совместимых с системой Sound Blaster Pro, в декабре 1995 г. появилась новая разработка компании Microsoft - DirectX, которая представляет собой серию программируемых интерфейсов приложения (Application Program Interfaces - API) для непосредственного взаимодействия с устройствами аппаратного обеспечения.

Сегодня практически каждый компьютер оснащен звуковым адаптером того или иного типа и устройством CD-ROM или

CD-ROM-совместимым дисководом. После принятия стандартов МРС-1-МРС-3, определяющих классификацию компьютеров, системы, оборудованные звуковой платой и CD-ROM-совместимым накопителем, получили название мультимедийных компьютеров (Multimedia PC). Первый стандарт МРС-1 был представлен в 1990 г.; стандарт МРС-3, сменивший его в июне 1995 г., определил следующие минимальные требования к аппаратному и программному обеспечению:

  • процессор - Pentium, 75 МГц;
  • оперативная память - 8 Мб;
  • жесткий диск - 540 Мб;
  • дисковод CD-ROM - четырехскоростной (4х);
  • разрешающая способность VGA - 640 х 480;
  • глубина цвета - 65 536 цветов (16-битовый цвет);
  • минимальная операционная система - Windows 3.1.

Любые компьютеры, созданные после 1996 г., содержащие

звуковой адаптер и CD-ROM-совместимый дисковод, полностью удовлетворяют требованиям стандарта МРС-3.

В настоящее время критерии принадлежности компьютера к классу мультимедийных несколько изменились в связи с техническими достижениями в этой области:

  • процессор - Pentium III, Celeron, Athlon, Duron или какой-либо другой процессор класса Pentium, 600 МГц;
  • оперативная память - 64 Мб;
  • жесткий диск - 3,2 Гб;
  • гибкий диск - 1,44 Мб (3,5" диск с высокой плотностью размещения данных);
  • дисковод CD-ROM - 24-скоростной (24х);
  • звуковая частота дискретизации - 16-разрядная;
  • разрешающая способность VGA - 1024 х 768;
  • глубина цвета - 16,8 млн цветов (24-битовый цвет);
  • устройства ввода-вывода - параллельный, последовательный, MIDI, игровой порт;
  • минимальная операционная система - Windows 98 или Windows Me.

Несмотря на то, что звуковые колонки или наушники технически не являются частью МРС-спецификации или приведенного выше перечня, они необходимы для воспроизведения звука. Кроме того, для ввода голосовой информации, используемой для записи звука или речевого управления компьютером, требуется микрофон. Системы, оснащенные звуковым адаптером, обычно содержат также недорогие пассивные или активные колонки (могут быть заменены наушниками, обеспечивающими требуемое качество и частотные характеристики воспроизводимого звука).

Мультимедийный компьютер, оснащенный колонками и микрофоном, обладает рядом возможностей и обеспечивает:

  • добавление стереозвука к развлекательным (игровым) программам;
  • увеличение эффективности образовательных программ (для маленьких детей);
  • добавление звуковых эффектов в демонстрационные и обучающие программы;
  • создание музыки с помощью аппаратных и программных средств MIDI;
  • добавление в файлы звуковых комментариев;
  • реализацию звуковых сетевых конференций;
  • добавление звуковых эффектов к событиям операционной системы;
  • звуковое воспроизведение текста;
  • проигрывание аудиокомпакт-дисков;
  • проигрывание файлов формата.mp3;
  • проигрывание видеоклипов;
  • воспроизведение DVD-фильмов;
  • поддержку управления голосом.

Компоненты аудиосистемы. При выборе аудиосистемы необходимо учитывать параметры ее компонентов.

Разъемы звуковых плат. Большинство звуковых плат имеет одинаковые миниатюрные (1/8") разъемы, с помощью которых сигналы подаются с платы на акустические системы, наушники и входы стереосистемы; к аналогичным разъемам подключается микрофон, проигрыватель компакт-дисков и магнитофон. На рис. 5.4 показаны четыре типа разъемов, которые как минимум должны быть установлены на звуковой плате. Цветовые обозначения разъемов каждого типа определены в руководстве РС99 Design Guide и варьируются для различных звуковых адаптеров.

Рис. 5.4.

Перечислим наиболее распространенные разъемы:

  • линейный выход платы. Сигнал с этого разъема подается на внешние устройства - акустические системы, наушники или на вход стереоусилителя, с помощью которого сигнал усиливают до требуемого уровня;
  • линейный вход платы. Используется при микшировании или записи звукового сигнала, поступающего от внешней аудиосистемы на жесткий диск;
  • разъем для акустической системы и наушников. Присутствует не во всех платах. Сигналы на акустические системы подаются с того же разъема (линейного выхода), что и на вход стереоусилителя;
  • микрофонный вход, или вход монофонического сигнала. Применяется для подключения микрофона. Запись с микрофона является монофонической. Уровень входного сигнала при этом поддерживается постоянным и оптимальным для преобразования. Для записи лучше всего использовать электродинамический или конденсаторный микрофон, рассчитанный на сопротивление нагрузки от 600 Ом до 10 кОм. В некоторых дешевых звуковых платах микрофон подключается к линейному входу;
  • разъем для джойстика (MIDI-порт). Представляет собой 15-контактный D-образный разъем. Два его контакта можно использовать для управления устройством MIDI, например клавишным синтезатором. В этом случае необходимо приобрести Y-образный кабель;
  • разъем MIDI. Включается в порт джойстика, имеет два круглых 5-контактных разъема DIN, используемых для подключения устройств MIDI, а также разъем для джойстика;
  • внутренний контактный разъем - специальный разъем для подключения к внутреннему накопителю CD-ROM. Позволяет воспроизводить звук с компакт-дисков через акустические системы, подключенные к звуковой плате. Этот разъем отличается от разъема для подключения контроллера CD-ROM к звуковой плате, так как данные по нему не передаются на шину компьютера.

Дополнительные разъемы. Большинство современных звуковых адаптеров поддерживает возможности воспроизведения DVD, обработки звука и т. д., а следовательно, имеет несколько дополнительных разъемов, особенности которых приведены ниже:

  • вход и выход MIDI. Такой разъем, не совмещенный с игровым портом, позволяет одновременно использовать как джойстик, так и внешние устройства MIDI;
  • вход и выход SPDIF (Sony/Philips Digital Interface - SP/DIF). Разъем используется для передачи цифровых аудиосигналов между устройствами без их преобразования к аналоговому виду. Интерфейс SPDIF иногда называют Dolby Digital;
  • CD SPDIF. Разъем предназначен для подключения накопителя CD-ROM к звуковой плате с помощью интерфейса SPDIF;
  • вход TAD. Разъем для подключения модемов с поддержкой автоответчика (Telephone Answering Device) к звуковой плате;
  • цифровой выход DIN. Разъем предназначен для подключения многоканальных цифровых акустических систем;
  • вход Аих. Обеспечивает подключение к звуковой карте других источников сигнала, например ТВ-тюнера;
  • вход I2S. Позволяет подключать к звуковой карте цифровой выход внешних источников, например DVD.

Дополнительные разъемы обычно располагаются непосредственно на звуковой плате или подсоединяются к внешнему блоку или дочерней плате. Например, Sound Blaster Live! Platinum 5.1 представляет собой устройство, состоящее из двух частей. Сам звуковой адаптер подключается посредством разъема PCI, а дополнительные соединители - к внешнему коммутационному блоку LiveDrive IR, который устанавливается в неиспользуемый отсек дисковода.

Управление громкостью. В некоторых звуковых платах предусмотрено ручное регулирование громкости; на более сложных платах управление громкостью осуществляется программно с помощью комбинаций клавиш, непосредственно в процессе игры в системе Windows или в каком-либо приложении.

Синтезаторы. В настоящее время все выпускаемые платы являются стереофоническими, поддерживающими стандарт MIDI.

Стереофонические звуковые платы одновременно воспроизводят (и записывают) несколько сигналов от двух различных источников. Чем больше сигналов предусмотрено в адаптере, тем натуральнее звук. Каждая расположенная на плате микросхема синтезатора, чаще всего компании Yamaha, позволяет получить 11 (микросхема YM3812 или OPL2) сигналов или более. Для имитации более 20 сигналов (микросхема YMF262 или OPL3) устанавливается одна либо две микросхемы частотных синтезаторов.

В таблично-волновых звуковых платах вместо синтезированных звуков, генерируемых микросхемой частотной модуляции, используются цифровые записи реальных инструментов и звуковых эффектов. Например, при воспроизведении таким аудиоадаптером звука трубы слышится непосредственно звук трубы, а не его имитация. Первые звуковые платы, поддерживающие эту функцию, содержали до 1 Мб звуковых фрагментов, хранящихся в микросхемах памяти адаптера. Но в результате появления высокоскоростной шины PCI и увеличения объема оперативной памяти компьютеров в большинстве звуковых плат в настоящее время используется так называемый программируемый таблично-волновой метод, позволяющий загружать в оперативную память компьютера 2-8 Мб коротких звуковых фрагментов различных музыкальных инструментов.

В современных компьютерных играх MIDI-звук практически не используется, но, несмотря на это, изменения, произведенные в звуковой плате DirectX 8, делают его приемлемым вариантом для игровых фонограмм.

Сжатие данных. В большинстве плат качество звучания соответствует качеству компакт-дисков с частотой дискретизации

44,1 кГц, когда на каждую минуту звучания при записи даже обычного голоса расходуется около 11 Мб дискового пространства. Для того чтобы уменьшить размеры звуковых файлов, во многих платах используется сжатие данных. Например, в плате Sound Blaster ASP 16 сжатие звука осуществляется в реальном времени (непосредственно при записи) со степенью сжатия 2:1, 3: 1 или 4:1.

Поскольку для хранения звукового сигнала необходим большой объем дискового пространства, выполняется его сжатие методом адаптивной дифференциальной импульсно-кодовой модуляции (Adaptive Differential Pulse Code Modulation - ADPCM), что позволяет уменьшить размер файла примерно на 50 %. Правда, при этом ухудшается качество звука.

Многофункциональные сигнальные процессоры. Во многих звуковых платах используются процессоры цифровой обработки сигналов (Digital Signal Processor - DSP). Благодаря им платы стали более «интеллектуальными» и освободили центральный процессор компьютера от выполнения таких трудоемких задач, как очистка сигналов от шума и сжатие данных в режиме реального времени.

Процессоры устанавливаются во многих универсальных звуковых платах. Например, программируемый процессор цифровой обработки сигналов EMU10K1 платы Sound Blaster Live! сжимает данные, преобразует текст в речь и синтезирует так называемое трехмерное звучание, создавая эффект отражения звука и хорового сопровождения. При наличии такого процессора звуковая плата превращается в многофункциональное устройство. Например, в коммуникационной плате WindSurfer компании IBM цифровой процессор выполняет функции модема, факса и цифрового автоответчика.

Драйверы звуковых плат. С большинством плат поставляются универсальные драйверы для DOS- и Windows-приложений. В операционных системах Windows 9х и Windows NT уже существуют драйверы для популярных звуковых плат; драйверы для других плат можно приобрести отдельно.

Приложения DOS обычно не имеют широкого выбора драйверов, но компьютерные игры поддерживают адаптеры Sound Blaster Pro.

В последнее время требования к звуковым устройствам существенно возросли, что обусловило в свою очередь повышение мощности аппаратных средств. Современное унифицированное мультимедийное аппаратное обеспечение не может в полной мере считаться совершенной мультимедийной системой, характеризующейся следующими особенностями:

  • реалистичный объемный звук в компьютерных играх;
  • высококачественный звук в DVD-фильмах;
  • распознавание речи и голосовое управление;
  • создание и запись звуковых файлов форматов MIDI, MP3, WAV и CD-Audio.

Дополнительные требования к аппаратному и программному обеспечению, необходимые для достижения вышеперечисленных характеристик, представлены в табл. 5.3.

Таблица 5.3. Дополнительные возможности и свойства звуковых адаптеров

Назначение

Необходимые

возможности

Дополнительное аппаратное обеспечение

Дополнительное программное обеспечение

Игровой порт; трехмерный звук; аудиоускорение

Игровой контроллер; задние колонки

Фильмы формата DVD

Декодирование Dolby 5.1

Колонки с аудиоадаптером, совместимые с Dolby 5.1

Программа декодирования файлов MPEG

Программно-совместимый аудиоадаптер

Микрофон

Программное обеспечение, позволяющее диктовать тексты

Создание файлов MIDI

Аудиоадаптер с MIDI-входом

MIDI-совместимая

музыкальная

клавиатура

Программа для создания MIDI-файлов

Создание файлов MP3

Оцифровка звуковых файлов

Дисковод CD-R или CD-RW

Программа для создания МРЗ-файлов

Создание файлов WAV

Микрофон

Программа звукозаписи

Создание файлов CDAudio

Внешний источник звука

Программа преобразования файлов WAV или MP3 в CD-Audio

Минимальные требования, предъявляемые к звуковым платам.

Замена прежнего аудиоадаптера Sound Blaster Pro стандарта ISA звуковой платой PCI позволила значительно улучшить рабочие характеристики системы, однако целесообразно использовать все возможности звуковых плат, к которым в частности относятся:

  • поддержка трехмерного звука, реализованная в наборе микросхем. Выражение «трехмерный звук» означает, что звуки, соответствующие происходящему на экране, раздаются дальше или ближе, за спиной или где-то в стороне. Интерфейс Microsoft DirectX 8.0 включает поддержку трехмерного звука, однако для этого лучше использовать аудиоадаптер с аппаратно встроенной поддержкой трехмерного звука;
  • использование интерфейса DirectX 8.0 наряду с другими интерфейсами API трехмерного звука, к которым относятся, например, ЕАХ компании Creative, 3D Positional Audio компании Sensaura и технология A3D ныне не существующей компании Aureal;
  • ЗО-звуковое ускорение. Звуковые платы с наборами микросхем, поддерживающими эту возможность, имеют достаточно низкий коэффициент загрузки процессора, что приводит к общему увеличению скорости игр. Для получения наилучших результатов следует воспользоваться наборами микросхем, поддерживающими ускорение наибольшего числа 3D-потоков; в противном случае обработка трехмерного звука центральным процессором будет затруднена, что в конечном счете скажется на скорости игры;
  • игровые порты, поддерживающие игровые контроллеры с силовой обратной связью.

Сегодня существует множество звуковых плат среднего уровня, поддерживающих как минимум две из перечисленных функций. При этом розничная цена аудиоадаптеров не превышает 50-100 долл. Новые наборы микросхем трехмерного звука, поставляемые различными производителями, позволяют любителям компьютерных 3D-игр модернизировать систему в соответствии со своими пожеланиями.

Фильмы в формате DVD на экране компьютера. Для просмотра фильмов в формате DVD на компьютере необходимы следующие компоненты:

  • программное обеспечение для воспроизведения цифровых дисков, поддерживающее выход Dolby Digital 5.1. Одним из наиболее приемлемых вариантов является программа PowerDVD;
  • аудиоадаптер, поддерживающий входной сигнал Dolby Digital дисковода DVD и выводящий данные на Dolby Digital 5.1-совместимые звуковые аппаратные устройства. При отсутствии соответствующего аппаратного обеспечения вход Dolby 5.1 настраивается для работы с четырьмя колонками; кроме того, можно добавить вход S/PDIF ACS (Dolby Surround), предназначенный для четырехколоночных акустических систем;
  • Dolby Digital 5.1-совместимые приемник и колонки. Большинство высококачественных звуковых плат, поддерживающих систему Dolby Digital 5.1, соединены со специальным аналого-входным приемником, но ряд других, например, звуковые платы серии Creative Labs Sound Blaster Live! Platinum, поддерживают и акустические системы с цифровым входом, добавляя к плате дополнительный разъем Digital DIN.

Распознавание речи. Технология распознавания речи пока несовершенна, но уже сегодня существуют программы, позволяющие отдавать компьютеру команды голосом, вызывать нужные приложения, открывать файлы и необходимые диалоговые окна и даже диктовать ему тексты, которые раньше пришлось бы набирать.

Для типичного пользователя приложения этого типа бесполезны. Так, компания Compaq некоторое время поставляла компьютеры с микрофоном и приложением для голосового управления, причем стоило приложение очень дешево. Наблюдать за множеством пользователей в офисе, говорящих с компьютерами, было, конечно, интересно, но производительность фактически не увеличилась, зато много времени было потрачено впустую, поскольку пользователи были вынуждены экспериментировать с программным обеспечением, а кроме того, в офисе стало очень шумно.

Однако для пользователей с ограниченными возможностями по здоровью программное обеспечение этого типа может представлять определенный интерес, поэтому технология распознавания речи непрерывно развивается.

Как уже было сказано выше, существует еще один тип программного обеспечения распознавания речи, которое позволяет преобразовывать речь в текст. Это необычайно трудная задача, прежде всего из-за различий в речевых моделях разных людей, поэтому почти все программное обеспечение, в том числе некоторые приложения для подачи команд голосом, предусматривают этап «обучения» технологии распознавания голоса конкретного пользователя. В процессе такого обучения пользователь читает текст (или слова), бегущий на экране компьютера. Поскольку текст запрограммирован, компьютер быстро адаптируется к манере речи говорящего.

В результате проведенных экспериментов оказалось, что качество распознавания зависит от индивидуальных особенностей речи. Кроме того, некоторые пользователи способны диктовать целые страницы текста без прикосновений к клавиатуре, в то время как другие от этого утомляются.

Существует множество параметров, влияющих на качество распознавания речи. Перечислим основные из них:

  • программы распознавания дискретной и слитной речи. Слитная (или связная) речь, позволяющая вести более естественный «диалог» с компьютером, в настоящее время является стандартной, но, с другой стороны, есть ряд неразрешимых пока проблем в достижении приемлемой точности распознавания;
  • обучаемые и необучаемые программы. «Обучение» программы для корректного распознавания речи дает хорошие результаты даже в тех приложениях, которые позволяют пропустить этот этап;
  • большие активные и общие словари. Программы с большим активным словарем значительно быстрее реагируют на устную речь, а программы, имеющие больший общий словарь, позволяют сохранить уникальный запас слов;
  • производительность аппаратного обеспечения компьютера. Увеличение быстродействия процессоров и объема оперативной памяти приводит к ощутимому повышению скорости и точности программ распознавания речи, а также позволяет разработчикам вводить дополнительные возможности в новые версии приложений;
  • высококачественная звуковая плата и микрофон: наушники со встроенным микрофоном предназначены не для записи музыки или звуковых эффектов, а именно для распознавания речи.

Звуковые файлы. Для хранения аудиозаписей на персональном компьютере существуют файлы двух основных типов. В файлах первого типа, называемых обычными звуковыми файлами, используются форматы.wav, .voc, .au и.aiff. Звуковой файл содержит данные о форме волны, т. е. представляет собой запись аналоговых аудиосигналов в цифровой форме, пригодной для хранения на компьютере. Определены три уровня качества записи звуков, применяемых в операционных системах Windows 9х и Windows Me, а также уровень качества записи звука с характеристиками 48 кГц, 16-разрядный стерео и 188 Кб/с. Этот уровень предназначен для поддержки воспроизведения звука из таких источников, как DVD и Dolby АС-3.

Для достижения компромисса между высоким качеством звука и малым размером файла можно преобразовать файлы формата.wav в формат.mp3.

Сжатие аудиоданных. Существует две основные области, в которых применяется сжатие звука:

  • использование звуковых фрагментов на веб-узлах;
  • уменьшение объема высококачественных музыкальных файлов.

Специальные программы редактирования звуковых файлов, в частности, RealProducer компании Real или Microsoft Windows Media Encoder 7, позволяют уменьшать объем звуковых фрагментов при минимальной потере качества.

Самый популярный формат звуковых файлов - .mp3. Качество этих файлов приближается к качеству звучания компакт-диска, а по размеру они намного меньше обычных файлов.wav. Так, звуковой файл продолжительностью звучания 5 мин формата.wav с качеством компакт-диска имеет размер около 50 Мб, в то время как тот же звуковой файл формата.mp3 - около 4 Мб.

Единственным недостатком файлов формата.mp3 является отсутствие защиты от несанкционированного использования, т. е. любой желающий может свободно загрузить такой файл из Интернета (благо веб-узлов, предлагающих эти «пиратские» записи, существует великое множество). Описываемый формат файлов, несмотря на недостатки, получил довольно широкое распространение и обусловил массовое производство трЗ-плееров.

Файлы MIDI. Звуковой файл формата MIDI отличается от формата.wav так же, как векторный рисунок от растра. Файлы MIDI имеют расширение.mid или.rmi и являются полностью цифровыми, содержащими не запись звука, а команды, используемые аудиооборудованием для его создания. Подобно тому как по командам видеоадаптеры создают изображения трехмерных объектов, звуковые платы MIDI работают с файлами MIDI, чтобы синтезировать музыку.

MIDI - мощный язык программирования, который получил распространение в 1980-е гг. и разработан специально для электронных музыкальных инструментов. Стандарт MIDI стал новым словом в области электронной музыки. С помощью MIDI можно создавать, записывать, редактировать и воспроизводить музыкальные файлы на персональном компьютере или на MIDI-co- вместимом электронном музыкальном инструменте, подключенном к компьютеру.

Файлы MIDI в отличие от других типов звуковых файлов требуют относительно небольшого объема дискового пространства. Для записи 1 ч стереомузыки, хранимой в формате MIDI, требуется менее 500 Кбайт. Во многих играх используется запись звуков в формате MIDI, а не записи дискретизированного аналогового сигнала.

Файл MIDI - фактически цифровое отображение музыкальной партитуры, составленное из нескольких выделенных каналов, каждый из которых представляет различный музыкальный документ или тип звука. В каждом канале определены частоты и продолжительность звучания нот: в результате файл MIDI, например, для струнного квартета, содержит четыре канала, которые представляют две скрипки, альт и виолончель.

Все три спецификации МРС, а также РС9х предусматривают поддержку формата MIDI во всех звуковых платах. Стандарт General MIDI для большинства звуковых плат предусматривает до 16 каналов в единственном файле MIDI, но это не обязательно ограничивает звук 16 инструментами. Один канал способен представлять звук группы инструментов; поэтому можно синтезировать полный оркестр.

Поскольку файл MIDI состоит из цифровых команд, редактировать его намного легче, чем звуковой файл типа.wav. Соответствующее программное обеспечение позволяет выбирать любой канал MIDI, записывать ноты, а также добавлять эффекты. Определенные пакеты программ предназначены для записи музыки в файле MIDI, используя стандартную музыкальную систему обозначений. В результате композитор пишет музыку непосредственно на компьютере, редактирует ее при необходимости, а затем распечатывает ноты для исполнителей. Это очень удобно для профессиональных музыкантов, которые вынуждены тратить много времени на переписывание нот.

Проигрывание файлов MIDI. Запуск файла MIDI на персональном компьютере не означает воспроизведение записи. Компьютер фактически создает музыку по записанным командам: система читает файл MIDI, синтезатор генерирует звуки для каждого канала в соответствии с командами в файле, для того чтобы придать нужный тон и длительность звучанию нот. Для получения звука определенного музыкального инструмента синтезатор использует предопределенный образец, т. е. набор команд, с помощью которых создается звук, подобный воспроизводимому конкретным инструментом.

Синтезатор на звуковой плате подобен электронному клавишному синтезатору, но с ограниченными возможностями. В соответствии со спецификацией МРС звуковая плата должна иметь частотный синтезатор, который может одновременно проиграть по крайней мере шесть мелодичных нот и две ударные.

Частотный синтез. Большинство звуковых плат генерирует звуки с помощью частотного синтезатора; эта технология была разработана еще в 1976 г. Используя одну синусоидальную волну для изменения другой, частотный синтезатор создает искусственный звук, который напоминает звучание определенного инструмента. В стандарте MIDI определен набор предварительно запрограммированных звуков, которые можно проиграть с помощью большинства инструментов.

В некоторых частотных синтезаторах используются четыре волны, и воспроизводимые звуки имеют вполне нормальное, хотя и несколько искусственное звучание. Например, синтезируемый звук трубы, несомненно, подобен ее звучанию, но никто и никогда не признает его звуком настоящей трубы.

Таблично-волновой синтез. Особенность частотного синтеза состоит в том, что воспроизводимый звук даже в лучшем случае не полностью совпадает с реальным звучанием музыкального инструмента. Недорогая технология более естественного звучания была разработана корпорацией Ensoniq в 1984 г. Она предусматривает запись звучания любого инструмента (включая фортепьяно, скрипку, гитару, флейту, трубу и барабан) и сохранение оцифрованного звука в специальной таблице. Эта таблица записывается или в микросхемы ROM или на диск, а звуковая плата может извлекать из таблицы оцифрованный звук нужного инструмента.

С помощью таблично-волнового синтезатора можно выбрать инструмент, заставить звучать единственно нужную ноту и при необходимости изменить ее частоту (т. е. воспроизвести заданную ноту из соответствующей октавы). В некоторых адаптерах для улучшения воспроизведения звука используется несколько образцов звучания одного и того же инструмента. Самая высокая нота на фортепьяно отличается от самой низкой высотой тона, поэтому для более естественного звучания нужно выбрать образец, наиболее близкий (по высоте тона) к синтезируемой ноте.

Таким образом, от размера таблицы в значительной степени зависит качество и разнообразие звуков, которые способен воспроизводить синтезатор. Лучшие качественные таблично-волновые адаптеры обычно имеют на плате память объемом в несколько мегабайт для хранения образцов. В некоторых из них предусмотрена возможность подключения дополнительных плат для установки дополнительной памяти и записи образцов звуков в таблицу.

Подключение других устройств к разъему MIDI. Интерфейс MIDI звуковой платы применяется также для подключения электронных инструментов, генераторов звуков, барабанов и других устройств MIDI к компьютеру. В результате файлы MIDI воспроизводит высококачественный музыкальный синтезатор, а не синтезатор звуковой платы, кроме того, можно создавать собственные файлы MIDI, проигрывая ноты на специальной клавиатуре. Правильно подобранное программное обеспечение позволит сочинить симфонию на компьютере типа PC с помощью записи нот каждого инструмента отдельно в собственный канал, а затем разрешить одновременное звучание всех каналов. Многие профессиональные музыканты и композиторы используют устройства MIDI для сочинения музыки прямо на компьютерах, т. е. обходясь без традиционных инструментов.

Существуют также платы MIDI с высоким качеством звучания, которые работают в двунаправленном режиме, т. е. воспроизводят предварительно записанные звуковые дорожки во время записи новой дорожки в тот же файл MIDI. Еще несколько лет назад это можно было сделать только в студии на профессиональном оборудовании, стоившем сотни тысяч долларов.

Устройства MIDI подключаются к двум круглым 5-контактным разъемам DIN звукового адаптера, используемым для входных (MIDI-IN) и выходных (MIDI-OUT) сигналов. Многие устройства также имеют порт MIDI-THRU, который передает сигналы, поступающие на вход устройства, непосредственно на его выход, но звуковые платы, как правило, такого порта не имеют. Интересно, что в соответствии со стандартом MIDI данные передаются только через контакты 1 и 3 разъемов. Контакт 2 экранирован, а контакты 4 и 5 не используются.

Основная функция интерфейса MIDI звуковой платы состоит в конвертировании (преобразовании) потока байтов (т. е. параллельно поступающих 8 бит) данных, которые передаются системной шиной компьютера, в последовательный поток данных в формате MIDI. Устройства MIDI оснащены асинхронными последовательными портами, работающими на скорости 31,25 Кбод. При обмене данными в соответствии со стандартом MIDI используются восемь информационных разрядов с одним стартовым и одним стоповым битами, причем на последовательную передачу 1 байта затрачивается 320 мс.

В соответствии со стандартом MIDI сигналы передаются по специальной неэкранированной витой паре, которая может иметь максимальную длину до 15 м (хотя большинство продаваемых кабелей имеют длину 3 или 6 м). С помощью шлейфа можно также подключить несколько устройств MIDI, чтобы объединить их возможности. Полная длина цепочки устройств MIDI не ограничена, но длина каждого отдельного кабеля не должна превышать 15 м.

В системах типа legacy-free нет разъема игрового порта (MIDI-порта) - все устройства подключаются к шине типа USB.

Программное обеспечение для устройств MIDI. С операционными системами Windows 9х, Windows Me и Windows 2000 поставляется программа «Универсальный проигрыватель» (Media Player), которая воспроизводит файлы MIDI. Для того чтобы использовать все возможности MIDI, рекомендуется приобрести специализированное программное обеспечение для выполнения различных операций редактирования файлов MIDI (задание темпа проигрывания, вырезания, а также вставки различной предварительно записанной музыки).

Ряд звуковых плат поставляется вместе с программами, в которых предусмотрены возможности редактирования файлов MIDI. Кроме того, многие бесплатные и условно-бесплатные инструментальные средства (программы) свободно распространяются через Интернет, но действительно мощное программное обеспечение, которое позволяет создавать и редактировать файлы MIDI, приходится покупать отдельно.

Запись. Практически на всех звуковых платах устанавливается входной разъем, подключив микрофон к которому, можно записать свой голос. С помощью программы «Звукозапись» (Sound Recorder) в системе Windows воспроизводят, редактируют и записывают звуковой файл в специальном формате.wav.

Ниже перечислены основные способы использования файлов формата.wav:

  • сопровождение тех или иных событий в системе Windows. Для этого следует воспользоваться опцией «Звук» (Sounds) панели управления Windows;
  • добавление речевых комментариев с помощью элементов управления Windows OLE и ActiveX к документам различного типа;
  • ввод сопроводительного текста в презентации, создаваемые с помощью программ PowerPoint, Freelance Graphics, Corel Presentations или др.

С целью уменьшения объема и дальнейшего использования в Интернете файлы.wav преобразуют в файлы формата.mp3 или.wma.

Аудиокомпакт-диски. С помощью накопителя CD-ROM можно прослушивать аудиокомпакт-диски не только через акустические системы, но и через наушники, параллельно работая с другими программами. К ряду звуковых плат прилагаются программы для проигрывания компакт-дисков, а через Интернет такие программы зачастую скачивают бесплатно. В этих программах обычно присутствует визуальный дисплей, имитирующий переднюю панель проигрывателя компакт-дисков для управления с помощью клавиатуры или мыши.

Звуковой смеситель (микшер). При наличии нескольких источников звука и только одной акустической системы необходимо воспользоваться звуковым смесителем. Большинство звуковых плат оснащены встроенным смесителем звука (микшером), позволяющим смешивать звук от аудио-, MIDI- и WAV-источников, линейного входа и CD-проигрывателя, воспроизводя его на едином линейном выходе. Обычно интерфейсы программ для смешивания звука на экране выглядят так же, как панель стандартного звукового смесителя. Это позволяет легко управлять громкостью звука каждого источника.

Звуковые платы: основные понятия и термины. Для того чтобы понять, что такое звуковые платы, сначала необходимо разобраться в терминах. Звук - это колебания (волны), распространяющиеся в воздухе или другой среде от источника колебаний во всех направлениях. Когда волны достигают уха, расположенные в нем чувствительные элементы воспринимают вибрацию и слышится звук.

Каждый звук характеризуется частотой и интенсивностью (громкостью).

Частота - это количество звуковых колебаний в секунду; она измеряется в герцах (Гц). Один цикл (период) - это одно движение источника колебания (туда и обратно). Чем выше частота, тем выше тон.

Человеческое ухо воспринимает лишь небольшой диапазон частот. Очень немногие слышат звуки ниже 16 Гц и выше 20 кГц (1 кГц = 1000 Гц). Частота звука самой низкой ноты рояля равна 27 Гц, а самой высокой - чуть больше 4 кГц. Наивысшая звуковая частота, которую могут передать радиовещательные FM-стан- ции, составляет 15 кГц.

Громкость звука определяется амплитудой колебаний, которая зависит в первую очередь от мощности источника звука. Например, струна фортепьяно при слабом ударе по клавише звучит тихо, поскольку диапазон ее колебаний невелик. Если ударить по клавише посильнее, то амплитуда колебаний струны увеличится. Громкость звука измеряется в децибелах (дБ). Шорох листьев, например, имеет громкость около 20 дБ, обычный уличный шум - около 70 дБ, а близкий удар грома - 120 дБ.

Оценка качества звукового адаптера. Для оценки качества звукового адаптера используются три параметра:

  • диапазон частот;
  • коэффициент нелинейных искажений;
  • отношение сигнал/шум.

Частотная характеристика определяет тот диапазон частот, в котором уровень записываемых и воспроизводимых амплитуд остается постоянным. Для большинства звуковых плат диапазон составляет от 30 Гц до 20 кГц. Чем шире этот диапазон, тем лучше плата.

Коэффициент нелинейных искажений характеризует нелинейность звуковой платы, т. е. отличие реальной кривой частотной характеристики от идеальной прямой, или, проще говоря, коэффициент характеризует чистоту воспроизведения звука. Каждый нелинейный элемент является причиной искажения. Чем меньше этот коэффициент, тем выше качество звука.

Высокие значения отношения сигнал/шум (в децибелах) соответствуют лучшему качеству воспроизведения звука.

Дискретизация. Если в компьютере установлена звуковая плата, то возможна запись звука в цифровой (называемой также дискретной) форме, в этом случае компьютер используется в качестве записывающего устройства. В состав звуковой платы входит небольшая микросхема - аналого-цифровой преобразователь, или АЦП (Analog-to-Digital Converter - ADC), который при записи преобразует аналоговый сигнал в цифровую форму, понятную компьютеру. Аналогично при воспроизведении цифроаналоговый преобразователь (Digital-to-Analog Converter - DAC) преобразует аудиозапись в звук, который способны воспринимать наши уши.

Процесс превращения исходного звукового сигнала в цифровую форму (рис. 5.5), в которой он и хранится для последующего воспроизведения, называется дискретизацией, или оцифровыванием. При этом сохраняются мгновенные значения звукового сигнала в определенные моменты времени, называемые выбор-


Рис. 5.5. Схема преобразования звукового сигнала в цифровую форму ками. Чем чаще берутся выборки, тем точнее цифровая копия звука соответствует оригиналу.

Первым стандартом МРС предусматривался 8-разрядный звук. Разрядность звука характеризует количество бит, используемых для цифрового представления каждой выборки.

Восемь разрядов определяют 256 дискретных уровней звукового сигнала, а если использовать 16 бит, то их количество достигает 65 536 (естественно, качество звука значительно улучшается). Для записи и воспроизведения речи достаточно 8-разрядного представления, а для музыки требуется 16 разрядов. Большинство старых плат поддерживает лишь 8-разрядное представление звука, все современные платы обеспечивают 16 разрядов и более.

Качество записываемого и воспроизводимого звука наряду с разрешением определяется частотой дискретизации (количеством выборок в секунду). Теоретически она должна быть в 2 раза выше максимальной частоты сигнала (т. е. верхней границы частот) плюс 10%-ный запас. Порог слышимости человеческого уха - 20 кГц. Записи с компакт-диска соответствует частота 44,1 кГц.

Звук, дискретизированный на частоте 11 кГц (11 000 выборок в секунду), получается более размытым, чем звук, дискретизированный на частоте 22 кГц. Объем дискового пространства, необходимый для записи 16-разрядного звука с частотой дискретизации 44,1 кГц в течение 1 мин, составит 10,5 Мб. При 8-раз- рядном представлении, монофоническом звучании и частоте дискретизации 11 кГц необходимое дисковое пространство сокращается в 16 раз. Эти данные можно проверить с помощью программы «Звукозапись»: запишите звуковой фрагмент с различными частотами дискретизации и посмотрите на объем полученных файлов.

Трехмерный звук. Одним из наиболее сложных испытаний для звуковых плат, входящих в состав игровых систем, является выполнение задач, связанных с обработкой трехмерного звука. Существует несколько факторов, усложняющих решение задач подобного рода:

  • разные стандарты позиционирования звука;
  • аппаратное и программное обеспечение, используемое для обработки трехмерного звука;
  • проблемы, связанные с поддержкой интерфейса DirectX.

Позиционный звук. Позиционирование звука представляет собой общую технологию для всех зЬ-звуковых плат и включает настройку определенных параметров, таких, как реверберация или отражение звука, выравнивание (баланс) и указание на «расположение» источника звука. Все эти компоненты создают иллюзию звуков, раздающихся впереди, справа, слева от пользователя или даже за его спиной. Наиболее важным элементом позиционного звука является функция преобразования HRTF (Head Related Transfer Function), определяющая изменение восприятия звука в зависимости от формы уха и угла поворота головы слушателя. Параметры этой функции описывают условия, при которых «реалистичный» звук воспринимается совершенно иначе, когда голова слушателя повернута в ту или другую сторону. Использование акустических систем с несколькими колонками, «окружающими» пользователя со всех сторон, а также сложные звуковые алгоритмы, дополняющие воспроизводимый звук управляемой реверберацией, позволяют сделать синтезированный компьютером звук еще более реалистичным.

Обработка трехмерного звука. Важным фактором качественного звучания являются различные способы обработки трехмерного звука в звуковых платах, в частности:

  • централизованная (для обработки трехмерного звука используется центральный процессор, что приводит к снижению общего быстродействия системы);
  • обработка звуковой платы (3 D-ускорение) с помощью мощного цифрового обработчика сигналов (DSP), выполняющего обработку непосредственно в звуковой плате.

Звуковые платы, осуществляющие централизованную обработку трехмерного звука, могут стать основной причиной снижения частоты смены кадров (числа анимационных кадров, выводимых на экран за каждую секунду) при использовании функции трехмерного звука. В звуковых платах со встроенным аудиопроцессором частота смены кадров при включении или отключении трехмерного звука почти не изменяется.

Как показывает практика, средняя частота смены кадров реалистичной компьютерной игры должна быть не меньше 30 кадр./с (кадров в секунду). При наличии быстродействующего процессора, например, Pentium III 800 МГц, и какой-либо современной ЗЭ-звуковой платы такая частота достигается достаточно легко. При использовании более медленного процессора, скажем, Celeron 300А с рабочей частотой 300 МГц, и платы с централизованной обработкой трехмерного звука частота смены кадров станет намного ниже 30 кадр./с. Для того чтобы увидеть, как влияет обработка трехмерного звука на скорость компьютерных игр, предусмотрена функция отслеживания частоты кадров, встроенная в большинство игр. Частота смены кадров связана непосредственно с коэффициентом использования процессора; повышение ресурсных требований к процессору приведет к уменьшению частоты смены кадров.

Технологии трехмерного звука и трехмерного видеоизображения представляют наибольший интерес прежде всего для разработчиков компьютерных игр, однако их использование в коммерческой среде также не за горами.

Подключение стереосистемы к звуковой плате. Процесс подключения стереосистемы к звуковой плате заключается в их подсоединении с помощью кабеля. Если в звуковой плате есть выход для акустической системы или наушников и линейный стереовыход, то для подключения стереосистемы лучше воспользоваться последним. В этом случае получается более качественный звук, поскольку на линейный выход сигнал поступает, минуя цепи усиления, и поэтому практически не подвергается искажениям, а усиливать сигнал будет только стереосистема.

Соедините этот выход с дополнительным входом вашей стереосистемы. Если стереосистема не имеет вспомогательных входов, следует воспользоваться другими, например, входом для проигрывателя компакт-дисков. Стереоусилитель и компьютер совсем не обязательно располагать рядом, поэтому длина соединительного кабеля может составить несколько метров.

В ряде стереомагнитол и радиоприемников на задней панели предусмотрен разъем для подключения тюнера, магнитофона и проигрывателя компакт-дисков. Используя этот разъем, а также линейные вход и выход звуковой платы, можно прослушивать звук, поступающий от компьютера, а также радиопередачи посредством акустической стереосистемы.