Закон Ома - физический закон, определяющий зависимость между электрическими величинами - напряжением, сопротивлением и током для проводников.
Впервые открыл и описал его в 1826 году немецкий физик Георг Ом, показавший (с помощью гальванометра) количественную связь между электродвижущей силой, электрическим током и свойствами проводника, как пропорциональную зависимость.
Впоследствии свойства проводника, способные противостоять электрическому току на основе этой зависимости, стали называть электрическим сопротивлением (Resistance), обозначать в расчётах и на схемах буквой R и измерять в Омах в честь первооткрывателя.
Сам источник электрической энергии также обладает внутренним сопротивлением, которое принято обозначать буквой r .

Закон Ома для участка цепи

Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома:

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.

Отсюда следуют ещё два полезных соотношения:

Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения).

Если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.

Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R .
Кроме того, следует помнить, что Закон Ома справедлив только для линейных элементов цепи.

Предлагается простой Онлайн-калькулятор для практических расчётов.

Закон Ома. Расчёт напряжения, сопротивления, тока, мощности.
После сброса ввести два любых известных параметра.

Закон Ома для замкнутой цепи

Если к источнику питания подключить внешнюю цепь сопротивлением R , в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I - Сила тока в цепи.
- Электродвижущая сила (ЭДС) - величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника.
r - Внутреннее сопротивление источника питания.

Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR .
Напряжение U , при подключении нагрузки R , всегда будет меньше чем ЭДС на величину произведения I*r , которую называют падением напряжения на внутреннем сопротивлении источника питания.
С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы.
По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = - I*r .
Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U .
Если ток в цепи равен нулю, следовательно, = U . Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U ) независимо от сопротивления внешней цепи R .
Такой источник питания называют источником напряжения .

Закон Ома для переменного тока

При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление.
В таком случае запись Закона Ома будет иметь вид:

Здесь Z - полное (комплексное) сопротивление цепи - импеданс . В него входит активная R и реактивная X составляющие.
Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи.
Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс .

С учётом сдвига фаз φ , созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме :

Комплексная амплитуда тока. = I amp e jφ
- комплексная амплитуда напряжения. = U amp e jφ
- комплексное сопротивление. Импеданс.
φ - угол сдвига фаз между током и напряжением.
e - константа, основание натурального логарифма.
j - мнимая единица.
I amp , U amp - амплитудные значения синусоидального тока и напряжения.

Нелинейные элементы и цепи

Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников.
Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы.
Такие элементы и цепи, в которых они используются, называют нелинейными.

Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.

Историческая справка

Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

R провод =ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.

Закон Ома для параллельной и последовательной цепи

В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:

Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:

U эл =I*R элемента

Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:

1/R=1/R1+1/R2

Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.

Закон Ома для полной цепи

Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:

  • напряжение, если это источник ЭДС;
  • силу тока, если это источник тока;

Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.

Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:

I=ε/(R+r)

Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.

На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.

Закон Ома в дифференциальной и интегральной форме

Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.

Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

В интегральной форме:

Закон Ома для переменного тока

При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки R a и реактивное сопротивление X (или R r). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

  1. Ток в цепи с индуктивностью не может измениться мгновенно.
  2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

X L и X C – это реактивные составляющие нагрузки.

В связи с этим вводится величина cosФ:

Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

При этом сопротивление представляют в комплексной форме:

Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

Как запомнить закон Ома

Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

Нравится(0 ) Не нравится(0 )

Замкнутая цепь (рис. 2) состоит из двух частей - внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r ; внешняя - различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R . Тогда полное сопротивление цепи равно r + R .

По закону Ома для внешнего участка цепи 1 → 2 имеем:

\(~\varphi_1 - \varphi_2 = IR .\)

Внутренний участок цепи 2 → 1 является неоднородным. Согласно закону Ома, \(~\varphi_2 - \varphi_1 + \varepsilon = Ir\). Сложив эти равенства, получим

\(~\varepsilon = IR + Ir . \qquad (1)\)

\(~I = \frac{\varepsilon}{R + r} . \qquad (2)\)

Последняя формула представляет собой закон Ома для замкнутой цепи постоянного тока. Сила тока в цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи .

Так как для однородного участка цепи разность потенциалов есть напряжение, то \(~\varphi_1 - \varphi_2 = IR = U\) и формулу (1) можно записать:

\(~\varepsilon = U + Ir \Rightarrow U = \varepsilon - Ir .\)

Из этой формулы видно, что напряжение на внешнем участке уменьшается с увеличением силы тока в цепи при ε = const.

Подставим в последнюю формулу силу тока (2), получим

\(~U = \varepsilon \left(1 - \frac{r}{R + r} \right) .\)

Проанализируем это выражение для некоторых предельных режимов работы цепи.

а) При разомкнутой цепи (R → ∞) U = ε , т.е. напряжение на полюсах источника тока при разомкнутой цепи равно ЭДС источника тока.

На этом основана возможность приблизительного измерения ЭДС источника тока с помощью вольтметра, сопротивление которого много больше внутреннего сопротивления источника тока (\(~R_v \gg r\)). Для этого вольтметр подключают к клеммам источника тока.

б) Если к клеммам источника тока подключить проводник, сопротивление которого \(~R \ll r\), то R + r r , тогда \(~U = \varepsilon \left(1 - \frac{r}{r} \right) = 0\) , а сила тока \(~I = \frac{\varepsilon}{r}\) - достигает максимального значения.

Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием , а максимальную для данного источника силу тока называют током короткого замыкания:

\(~I_{kz} = \frac{\varepsilon}{r} .\)

У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 - 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), I kz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.

Запишем закон Ома для полной цепи в случае последовательного и параллельного соединения источников тока в батарею. При последовательном соединении источников "-" одного источника соединяется с "+" второго, "-" второго с "+" третьего и т.д. (рис. 3, а). Если ε 1 = ε 2 = ε 3 а r 1 = r 2 = r 3 то ε b = 3ε 1 , r b = 3r 1 . В этом случае закон Ома для полной цепи имеет вид\[~I = \frac{\varepsilon_b}{R + r_b} = \frac{3 \varepsilon_1}{R + 3r_1}\], или для n одинаковых источников \(~I = \frac{n \varepsilon_1}{R + nr_1}\).

Последовательное соединение применяют в том случае, когда внешнее сопротивление \(~R \gg nr_1\), тогда \(~I = \frac{n \varepsilon_1}{R}\) и батарея может дать силу тока, в n раз большую, чем сила тока от одного источника.

При параллельном соединении источников тока все "+" источников соединены вместе и "-" источников - также вместе (рис. 3, б). В этом случае

\(~\varepsilon_b = \varepsilon_1 ; \ r_b = \frac{r_1}{3}.\)

Откуда \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{3}}\) .

Для n одинаковых источников \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{n}}\) .

Параллельное соединение источников тока применяют тогда, когда нужно получить источник тока с малым внутренним сопротивлением или когда для нормальной работы потребителя электроэнергии в цепи должен протекать ток. больший, чем допустимый ток одного источника.

Параллельное соединение выгодно, когда R невелико по сравнению с r .

Иногда применяют смешанное соединение источников.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 262-264.

часто находит применение в работе с электричеством. Благодаря закономерности, найденной немецким физиком Георгом Омом, сегодня мы можем рассчитать величину тока, протекающего в проводе или необходимую толщину провода для подключения к сети.

История открытия

Будущий ученый с малых лет интересовался . Он провел множество испытаний, связанных с . Ввиду несовершенства измерительных приборов того времени, первые результаты исследований были ошибочны и препятствовали дальнейшему развитию вопроса. Георг опубликовал первую научную работу, в которой описывал возможную связь между напряжением и силой тока. Последующие его работы подтвердили предположения, и Ом сформулировал свой знаменитый закон. Все труды были внесены в доклад 1826 года, но научное сообщество не заметило труды молодого физика.

Через пять лет, когда известный французский учёный Пулье пришел к такому же выводу, Георга Ома наградили медалью Копли, за внесение большого вклада в развитии физика как науки.

Сегодня закон Ома используется по всему миру, признанный истинным законом природы. .

Детальное описание

Закон Георга показывает значение электричества в определенной сети, имеющее зависимость от сопротивления к нагрузке и внутренним элементам источника питания. Рассмотрим это детально.

Условное устройство, использующее электроэнергию (например, звуковой динамик) при подключении к источнику питания образует замкнутую цепь (рисунок 1). Подсоединим динамик к аккумулятору. Следующий через динамик ток тоже следует через источник питания. Поток заряженных частиц встретит сопротивление провода и внутренней электроники устройства, а также сопротивление аккумулятора (электролит внутри банки оказывает определенное воздействие на электрический ток). Исходя из этого, значение сопротивления закрытой сети складывается из сопротивления:

  • Источника питания;
  • Электрического устройства.

Подключение условного электрического прибора (динамика) к источнику питания (автомобильному аккумулятору)

Первый параметр называют внутренним, второй – внешним сопротивлением. Противодействие источника электричества маркируется символом r.

Представим, что по сети источник питания/электрическое устройство проходит определённый ток T. Для сохранения стабильного значения электричества внешней сети, в соответствии с законом, на её окончаниях должна наблюдаться потенциальная разность, которая равна R*T. Ток такой же величины проходит и внутри цепи. Вследствие этого – сохранение постоянного значения электричества внутри сети требует потенциальной разности на окончаниях сопротивления r. Она, согласно закону, должна равняться T*r. При сохранении стабильного тока в сети, значение электродвижущей силы равно:

E=T*r+T*R

Из формулы следует, что ЭДС равна сумме падения напряжений во внутренней и внешней сети. Если вынести значение T за скобки, получим:

Е= T(r+R)

T=E/(r+R)

Примеры задач на применение закона для соединенной сети

1) К источнику ЭДС 15 В и сопротивлением 2 Ом подсоединен реостат с сопротивлением 5 Ом. Задача – вычислить силу тока и напряжение на зажимах.

Вычисление

  • Представим закон Ома для соединенной сети: T=E/(r+R).
  • Снижение напряжения вычислим по формуле: U= E-Tr=ER/(R+r).
  • Подставим имеющиеся значения в формулу: T= (15 В)/((5+2) Ом) = 2.1 А, U=(15 В* 5 Ом)/(5+1) Ом = 12.5 В

Ответ: 2.1 А, 12.5 В.

2) При подсоединении к гальваническим элементам резистора с сопротивлением 30 Ом, сила тока в сети приняла значение в 1.5 А, а при подсоединении такого же элемента с сопротивлением 15 Ом сила тока стала 2.5 А. Задача – узнать значение ЭДС и внутреннее сопротивление цепи из гальванических элементов.

Вычисление

  • Запишем закон Георга Ома для соединённой сети: T=E/(r+R).
  • Из него выведем формулы для внутреннего и внешнего сопротивления: E=T_1 R_1+T_1 r, E= T_2 R_2 + T 2r.
  • Приравняем части формулы и вычислим внутреннее сопротивление: r=(T_1 R_1-T_2 R_2)/(T_2-T_1).
  • Полученные значения подставим в закон: E=(T_1 T_2 (R_2-R_1))/(T_2-T_1).
  • Проведем вычисления: r=(1.5 А∙30 Ом-2.5А∙15 Ом)/(2,5-1,5)А=7.5 Ом, E=(1.5 А∙2.5А(30-15)Ом)/((2.5-1.5)А)=56 В.

Ответ: 7.5 Ом, 56 В.

Сфера применения закона Ома для замкнутой цепи

Закон Ома – универсальный инструмент электрика. Он позволяет правильно рассчитать силу тока и напряжение в сети. В основе принципа работы некоторых устройств лежит закон Ома. В частности, предохранителей .

Короткое замыкание – случайное замыкание двух участков сети, не предусмотренное конструкцией оборудования и приводящее к неисправностям. Для предотвращения таких явлений используют специальные устройства, отключающие питание сети.

Если произойдет случайное замыкание цепи с большой перегрузкой, устройство автоматически прекратит подачу тока.

Закон Ома в данном случае находит место на участке цепи постоянного тока. В полной схеме процессов может быть гораздо больше. Многие действия при построении электрической сети или ее ремонте следует проводить с учетом закона Георга Ома.

Для полного изучения соотношения параметров тока в проводниках представлены формулы:

Более сложное выражение закона для практического применения:

Сопротивление представлено отношением напряжения к силе тока в цепи. Если напряжение увеличить в n раз, значение тока также увеличится в n раз.

Не менее известны в электротехнике труды Густава Киргофа. Его правила находят применения в расчетах разветвленных сетей. В основе этих правил лежит .

Труды ученого нашли применение при изобретении многих повседневных вещей, таких как лампы накаливания и электрические плиты. Современные достижения в электронике многим обязаны открытиям 1825 года.

Если точки 1 и 2 совпадают, то и выражение закона Ома для участка приобретает более простой вид:

где представляет собой полное сопротивление замкнутой цепи включая внутреннее сопротивление источников, а - алгебраическую сумму э.д.с. в данной цепи.

Ток, возникающий при внешнем сопротивлении равном нулю, называется током короткого замыкания.

Лекция 10.

Соединение проводников.

Используя закон Ома для участка цепи, можно показать, что сопротивление последовательного и параллельного соединения проводников равны соответственно:

Доказательство:

Отметим, что при параллельном соединении проводников, общее сопротивление всегда меньше наименьшего сопротивления в параллельном соединении. Убедитесь в этом самостоятельно.

Закон Джоуля - Ленца.

При прохождении тока через проводник сопротивлением выделяется теплота, которая рассеивается в окружающей среде. Найдем это количество теплоты. Воспользуемся для этого законом сохранения энергии и законом Ома.

Рассмотрим однородный участок цепи, на котором поддерживается постоянная разность потенциалов . Электрическое поле при этом совершает работу:

Если на участке отсутствует превращение в механическую, химическую или иные виды энергии кроме тепловой, то выделяющее количество теплоты равно работе электрического поля:

.

Тепловая мощность при этом равна:

Конечное количество теплоты находится интегрированием по времени:

Это формула выражает закон Джоуля – Ленца. Механизм тепловыделения связан с превращением дополнительной кинетической энергии, которую приобретают носители тока в электрическом поле, в энергию возбуждения колебаний решетки при столкновении носителей с атомами в узлах решетки.

Найдём выражение для закона Джоуля – Ленца в локальной форме. Для этой цели выделим в проводнике элементарный объём в форме цилиндра с образующей вдоль вектора . Пусть поперечное сечение цилиндра , а его длина . Тогда согласно закону Джоуля – Ленца в этом объеме за время выделяется количество теплоты:

где - объём цилиндра. Разделив последнее соотношение на получим формулу которая определяет тепловую мощность, выделяющуюся в единице объёма проводника:

Удельная тепловая мощность измеряется в .

Полученное соотношение выражает закон Джоуля – Ленца в локальной форме: удельная тепловая мощность тока пропорциональна квадрату плотности тока и удельному сопротивлению проводника в данной точке.

В такой форме закон Джоуля – Ленца применим к неоднородным проводникам любой формы, и не зависят от природы сторонних сил. Если на носители действуют только электрические силы, то на основании закона Ома :

Если участок цепи содержит источник э.д.с., то на носители тока будут действовать не только электрические, но и сторонние силы. В этом случае тепло, которое выделяется на участке, равно алгебраической сумме работ электрических и сторонних сил.

Умножим закон Ома в интегральной форме на силу тока :

Здесь слева стоит (тепловая мощность), а справа алгебраическая сумма мощностей электрических и сторонних сил, которую называютмощностью тока.

В замкнутой цепи :

т.е. мощность тепловыделения равна мощности сторонних сил.

Дифференциальный закон Ома

В

ыделим из массива проводника (по которому протекает электрический токI ) маленький цилиндр расположенный вдоль линий электрического тока в проводнике Рис.5.2. Пусть длина цилиндра будет dl а сечение dS . Тогда

О

тсюда

И

спользуя определение для плотности тока (5.1) и для проводимости проводника (5.4) получаем окончательно выражение, которое получило название дифференциальный закон Ома

Работа и мощность, производимые электрическим током

При перемещении заряда между точками с некоторой разностью потенциалов соответствующей падению напряжения U производится работа и мощность:

Э

тот закон был получен экспериментально и получил название закон Джоуля – Ленца. Если подобно предыдущему случаю перейти к рассмотрению малых объемов то нетрудно получить закон Джоуля – Ленца в дифференциальной форме (5.6-5.8):

Законы Кирхгофа

Первое правило Кирхгофа

Рассмотрим электрическую цепь имеющую разветвления Рис.5.3. Точки разветвления будем называть узлами. При установившемся процессе, когда электрический ток протекающий по цепи постоянен потенциалы всех точек цепи так же неизменны. Это может происходить в том случае если электрические заряды не накапливаются и не исчезают в узлах цепи.

Таким образом при установившемся режиме количество притекшего электричества к узлу равно количеству электричества ушедшего из узла. Отсюда вытекает первое правило Кирхгофа:

Алгебраическая сумма сил электрических токов сходящихся в узле равна нулю (5.9) (токи приходящие в узел берутся со знаками +, а токи отходящие от узла со знаком -)

I1+i2+i3-i4-i5=0

ΣI i =0 5.9.

Соединения проводников

На практике часто приходится пользоваться различным соединением проводников

П оследовательное соединение Рис.5.4.

П

ри таком соединении электрический ток во всех участках цепи и на всех ее элементах одинаковI = I 1 = I 2 = I 3 =… I n . Напряжение на концах цепи между точками А и В складывается из напряжений на каждом ее элементе U AB = U 1 + U 2 + U 3 +… U n . Таким образом.

Параллельное соединение Рис.5.5


Закон Ома для замкнутой цепи содержащей э.Д.С.

Р ассмотрим неразветвленную электрическую цепь содержащую Э.Д.С.(E ) с внутренним сопротивлением r и содержащую внешнее сопротивление R Рис.5.6

Полная работа по перемещению заряда по всему контуру будет складываться из работы во внешней цепи и работы внутри источника А=А внешн источн .

Причем работа во внешней цепи отнесенная к величине заряда это по определению разность потенциалов на внешней цепи (падение напряжения на внешней цепи) А внешн / q = U . А работа, по всей цепи отнесенная к заряду это по определению Э.Д.С. A / q = E . Отсюда E = U + А источн / q . С другой стороны А источн = I 2 rt . Отсюда А источн / q = Ir . Таким образом окончательно получаем: E = U + Ir

Или E = I (R + r ) 5.12

Под E подразумевается сумма всех Э.Д.С. входящих в неразветвленную цепь, а под r и R подразумевается сумма всех внутренних и внешних сопротивлений в неразветвленной цепи.

Сила тока одинаковая для всей неразветвленной замкнутой цепи содержащей Э.Д.С. прямо пропорциональна Э.Д.С. и обратно пропорциональна полному сопротивлению цепи.

Второе правило Кирхгофа

Рассмотрим разветвленную цепь Рис.5.7. Участок между двумя соседними узлами назовем ветвью. Так как разветвление имеет место лишь в соседних узлах, то в пределах ветви сила тока сохраняется по величине и направлению. Любую цепь можно рассматривать как совокупность контуров, а для каждого контура справедливо:

В любом замкнутом контуре, мысленно выделенном из электрической цепи алгебраическая сумма произведений сопротивлений соответствующих участков цепи, включая и внутренние сопротивления источников на силу тока в цепи равна алгебораической сумме всех Э.Д.С. в цепи

Закон Ома для замкнутой цепи

Если в проводнике создать электрическое поле и не принять мер для его поддержания, то перемещение зарядов очень быстро приведет к тому, что поле внутри проводника исчезнет и ток прекратится, поэтому для поддержания постоянного тока в течение длительного времени необходимо выполнение двух условий: электрическая цепь должна быть замкнутой; в электрической цепи наряду с участками, на которых положитель-

ные заряды движутся в сторону убывания потенциала, должны быть участки, на которых эти заряды движутся в сторону возрастания потенциала, т. е. против сил электростатического поля (см. изображенную штриховой линией часть цепи на рис. 5).

Перемещать положительные заряды против сил электростатического поля могут только силы неэлектростатического происхождения, называемые сторонними силами. Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) e , действующей в цепи или на ее участке. ЭДС e измеряется в вольтах (В). Источник ЭДС имеет некоторое внутреннее сопротивление , зависящее от его устройства. Это сопротивление оказывается включенным последовательно с источником в общую электрическую цепь. В качестве источников ЭДС используют гальванические элементы и генераторы постоянного тока (рис. 6).

Если неразветвленная замкнутая электрическая цепь (рис. 7) содержит несколько последовательно соединенных элементов с сопротивлением и источников ЭДС e к , имеющих внутреннее сопротивление то ее можно заменить эквивалентной цепью, изображенной на рис. 6. Сила тока в эквивалентной цепи определяется законом Ома для замкнутой цепи:

;

ЭДС, как и сила тока, есть величина алгебраическая. Если ЭДС способствует движению положительных зарядов в выбранном направлении, то e > 0, если ЭДС препятствует движению положительных зарядов в данном направлении, то e < 0. Чтобы определить знак ЭДС, необходимо показать в электрической цепи направление движения положительных зарядов. Положительные заряды в электрической цепи движутся от положительного полюса источника к отрицательному полюсу. Если по ходу этого направления перейти внутри источника от отрицательного полюса к положительному, то e > 0, если перейти внутри источника от положительного полюса к отрицательному, то e < 0.


Рис. 6 Рис. 7

Из закона Ома для замкнутой цепи следует, что падение напряжения U на зажимах источника меньше, чем ЭДС. Действительно, e , или e . Так как по закону Ома для однородного участка цепи напряжение на зажимах источника , то

3) используя закон Ома для замкнутой цепи, установить связь между силой тока и ЭДС.

Подскажите закон ома

Зако́н Ома - это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.
Так случилось, что в этом разделе страницы оказалось две словесных формулировки закона Ома:
1. Суть закона проста: если, при прохождении тока, напряжение и свойства проводника не изменяются, то
сила тока в проводнике прямо пропорциональна напряжению между концами проводника и обратно пропорциональна сопротивлению проводника.
2. Закон Ома формулируется так: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна характеристике участка, которую называют электрическим сопротивлением этого участка.
Следует также иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. , также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Пользователь удален

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы) , пропорциональна напряжению U на концах проводника:

где R = const.
Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
В СИ единицей электрического сопротивления проводников служит ом (Ом) . Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.
Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:
IR = U12 = φ1 – φ2 + E = Δφ12 + E.
Это соотношение принято называть обобщенным законом Ома.
На этом рис. изображена замкнутая цепь постоянного тока. Участок цепи (cd) является однородным.

По закону Ома,
IR = Δφcd.
Участок (ab) содержит источник тока с ЭДС, равной E.
По закону Ома для неоднородного участка,
Ir = Δφab + E.
Сложив оба равенства, получим:
I(R + r) = Δφcd + Δφab + E.
Но Δφcd = Δφba = – Δφab.
Поэтому

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Little prince

В интегральной форме: i=L*U | L-электропроводность, 1/R
В дифференциальной форме: j=A*E | A- электропроводность среды, j- плотность тока
Для замкнутого контура: i= E/(r+R) | уже приводили.. .
Для переменных токов: uo=io*sqrt (r^2 + (w*L -1/w*C)^2) |uo io - амплитуды тока и напряжения, r- активное сопротивление цепи, что в скобках и в квадрате - реактивная составляющая, sqrt = корень квадратный....

Оля семенова

Зако́н О́ма - эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.