Министерство образования и науки Республики Казахстан
Казахстанско-Американский свободный университет
Кафедра «Бизнеса»

РЕФЕРАТ

на тему: «Принципы построения глобальных сетей»

Выполнила: Помолова Н. А.

              Студент 2 курса,
Факультета «менеджмент»
Проверил: Четтыкбаев Р.К.

Усть-Каменогорск, 2010


Содержание

ВВЕДЕНИЕ………………………………………………………… …………….3
1. ГЛОБАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ…………………………………3
1.1 Принципы построения и функции глобальных компьютерных сетей……3
1.2 Коммуникационное оборудование глобальных сетей……………………..5
1.3Сетевые технологии. Глобальные сети с коммутацией каналов…………8
1.3.1 Глобальные сети с коммутацией пакетов.…………………………...…...9
2. СЕТЬ INTERNET.……………………………………………………… …......10
2.1 Создание и развитие Internet……………………………………………….. 10
2.2 Способы доступа в Internet………………………………… ……………...12
2.3 Адресация в сети Internet…………………………………………………... .15

2.4 Семейство протоколов TCP/IP………………………………………….…..16
2.5 Электронная почта……………………………………………………….... ..22
ЗАКЛЮЧЕНИЕ…………………………………………………… ……………. 23
БИБЛИОГРАФИЧЕСКИЙ СПИСОК…………………………………………..23


Введение

Современное человеческое общество живет в период, характеризующийся небывалым ростом объема информационных потоков. Это относится как к экономике, так и к социальной сфере. Рыночные отношения предъявляют повышенные требования к своевременности, достоверности, полноте информации. Применение современных электронных вычислительных машин дает возможность переложить трудоемкие операции на автоматические или автоматизированные устройства, которые могут работать со скоростью, превышающей скорость обработки информации человеком в миллионы раз. Использование ЭВМ приводит к коренной перестройке технологии производства практически во всех отраслях промышленности, коммерческой и финансово-кредитной деятельности и, как следствие, к повышению производительности и улучшению условий труда людей. Именно поэтому современный специалист должен владеть теоретическими знаниями в области информатики и практическими навыками использования вычислительной техники, техники связи и других средств управления. Расширение локально-вычислительных сетей и удлинение линий связи привело к необходимости создания глобальных сетей, в состав которых входят локальные, региональные сети и отдельные ПК. Для соединения ПК и сетей в глобальной сети используются специальные линии связи: волоконно-антические, телефонные, спутниковые и т.д. Скорость передачи в таких линиях зависит от качества всех составляющих. Наиболее массовым каналом передачи данных является телефонные линии. Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.
Объединение большого числа локально-вычислительных сетей привело в итоге к созданию всемирной компьютерной сети – Интернет.

1 ГЛОБАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ
1.1 Принципы построения и функции глобальных компьютерных сетей
Появление потребности в соединении компьютеров, находящихся на большом расстоянии друг от друга - дало начала для решения более простой задачи - доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса суперЭВМ. Затем появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер были реализованы и удаленные связи типа компьютер-компьютер. Компьютеры получили возможность обмениваться данными в автоматическом режиме, что, собственно, и является базовым механизмом любой вычислительной сети. На основе этого механизма в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие, ставшие теперь традиционными сетевые службы.
Таким образом, хронологически первыми появились глобальные сети (Wide Area Networks, WAN), то есть сети, объединяющие территориально рассредоточенные компьютеры, возможно находящиеся в различных городах и странах. Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи и концепции современных вычислительных сетей. Такие, например, как многоуровневое построение коммуникационных протоколов, технология коммутации пакетов, маршрутизация пакетов в составных сетях.
Глобальные компьютерные сети очень многое унаследовали от других, гораздо более старых и распространенных глобальных сетей - телефонных. Главным, результатом создания первых глобальных компьютерных сетей был отказ от принципа коммутации каналов, на протяжении многих десятков лет успешно использовавшегося в телефонных сетях. Выделяемый на все время сеанса связи составной канал с постоянной скоростью не мог эффективно использоваться пульсирующим трафиком компьютерных данных, у которого периоды интенсивного обмена чередуются с продолжительными паузами. Натурные эксперименты и математическое моделирование показали, что пульсирующий и в значительной степени не чувствительный к задержкам компьютерный трафик гораздо эффективней передается сетями, использующими принцип коммутации пакетов, когда данные разделяются на небольшие порции - пакеты которые самостоятельно перемещаются по сети за счет встраивания адреса конечного узла в заголовок пакета. Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого, то в первых глобальных сетях часто использовались уже существующие каналы связи, изначально предназначенные совсем для других целей. Например, в течение многих лет глобальные сети строились на основе телефонных каналов тональной частоты, способных в каждый момент времени вести передачу только одного разговора в аналоговой форме. Поскольку скорость передачи дискретных компьютерных данных по таким каналам была очень низкой (десятки килобит в секунду), набор предоставляемых услуг в глобальных сетях такого типа обычно ограничивался передачей файлов, преимущественно в фоновом режиме, и электронной почтой. Помимо низкой скорости такие каналы имеют и другой недостаток - они вносят значительные искажения в передаваемые сигналы. Поэтому протоколы глобальных сетей, построенных с использованием каналов связи низкого качества, отличаются сложными процедурами контроля и восстановления данных. Типичным примером таких сетей являются сети Х.25, разработанные еще вначале 70-х, когда низкоскоростные аналоговые каналы, арендуемые у телефонных компаний, были преобладающим типом каналов, соединяющих компьютеры и коммутаторы глобальной вычислительной сети. Прогресс глобальных компьютерных сетей во многом определялся прогрессом телефонных сетей. С конца 60-х годов в телефонных сетях все чаще стала применяться передача голоса в цифровой форме, что привело к появлению высокоскоростных цифровых каналов, соединяющих АТС и позволяющих одновременно передавать десятки и сотни разговоров. Была разработана специальная технология плезиохронной цифровой иерархии (Plesiochronous Digital Hierarchy, PDH), предназначенная для создания так называемых первичных, или опорных, сетей. Такие сети не предоставляют услуг конечным пользователям, они являются фундаментом, на котором строятся скоростные цифровые каналы "точка-точка", соединяющие оборудование другой (так называемой наложенной) сети, которая уже работает на конечного пользователя. Первоначально технология PDH, поддерживающая скорости до 140 Мбит/с, была внутренней технологией телефонных компаний. Однако со временем эти компании стали сдавать часть своих каналов PDH в аренду предприятиям, которые использовали их для создания собственных телефонных и глобальных компьютерных сетей. Появившаяся в конце 80-х годов технология синхронной цифровой иерархии (Synchronous Digital Hierarchy, SDH) расширила диапазон скоростей цифровых каналов до 10 Гбит/с, а технология спектрального мультиплексирования (Dense Wave Division Multiplexing, DWDM) - до сотен гигабит и даже нескольких теребит в секунду. К настоящему времени глобальные сети по разнообразию и качеству сервисов догнали локальные сети, которые долгое время были лидерами в этом отношении, хотя и появились на свет значительно позже.

1.2 Коммуникационное оборудование глобальных сетей
Типичный пример структуры глобальной компьютерной сети приведен на (рис. 1) Здесь используются следующие обозначения: S (switch) - коммутаторы, К - компьютеры, R (router) - маршрутизаторы, MUX (multiplexor)- мультиплексор, UNI (User-Network Interface) - интерфейс пользователь - сеть и NNI (Network-Network Interface) - интерфейс сеть - сеть. Кроме того, офисная АТС обозначена аббревиатурой РВХ, а маленькими черными квадратиками - устройства DCE,о которых будет рассказано ниже.
Рис. 1 Пример структуры глобальной сети
Сеть строится на основе некоммутируемых (выделенных) каналов связи, которые соединяют коммутаторы глобальной сети между собой. Коммутаторы называют также центрами коммутации пакетов (ЦКП) , то есть они являются коммутаторами пакетов, которые в разных технологиях глобальных сетей могут иметь и другие названия - кадры, ячейки cell. Как и в технологиях локальных сетей принципиальной разницы между этими единицами данных нет, однако в некоторых технологиях есть традиционные названия, которые к тому же часто отражают специфику обработки пакетов. Например, кадр технологии frame relay редко называют пакетом, поскольку он не инкапсулируется в кадр или пакет более низкого уровня и обрабатывается протоколом канального уровня.
Коммутаторы устанавливаются в тех географических пунктах, в которых требуется ответвление или слияние потоков данных конечных абонентов или магистральных каналов, переносящих данные многих абонентов. Абоненты сети подключаются к коммутаторам в общем случае также с помощью выделенных каналов связи. Эти каналы связи имеют более низкую пропускную способность, чем магистральные каналы, объединяющие коммутаторы, иначе сеть бы не справилась с потоками данных своих многочисленных пользователей. Для подключения конечных пользователей допускается использование коммутируемых каналов, то есть каналов телефонных сетей, хотя в таком случае качество транспортных услуг обычно ухудшается. Принципиально замена выделенного канала на коммутируемый ничего не меняет, но вносятся дополнительные задержки, отказы и разрывы канала по вине сети с коммутацией каналов, которая в таком случае становится промежуточным звеном между пользователем и сетью с коммутацией пакетов. Кроме того, в аналоговых телефонных сетях канал обычно имеет низкое качество из-за высокого уровня шумов. Применение коммутируемых каналов на магистральных связях коммутатор-коммутатор также возможно, но по темже причинам весьма нежелательно. Конечные узлы глобальной сети более разнообразны, чем конечные узлы локальной сети. На (рис.1) показаны основные типы конечных узлов глобальной сети: отдельные компьютеры. Все эти устройства вырабатывают данные для передачи в глобальной сети, поэтому являются для нее устройствами типа DTE (Data Terminal Equipment). Локальная сеть отделена от глобальной маршрутизатором или удаленным мостом (который на рисунке не показан), поэтому для глобальной сети она представлена единым устройством DTE - портом маршрутизатора или моста.При передаче данных через глобальную сеть мосты и маршрутизаторы , работают в соответствии с той же логикой, что и при соединении локальных сетей. Мосты, которые в этом случае называются удаленными мостами (remote bridges) , строят таблицу МАС - адресов на основании проходящего через них трафика, и по данным этой таблицы принимают решение - передавать кадры в удаленную сеть или нет. полезным. Маршрутизаторы принимают решение на основании номера сети пакета какого-либо протокола сетевого уровня (например, IP или IPX) и, если пакет нужно переправить следующему маршрутизатору по глобальной сети, например frame relay, упаковывают его в кадр этой сети, снабжают соответствующим аппаратным адресом следующего маршрутизатора и отправляют в глобальную сеть.
Мультиплексоры «голос - данные» предназначены для совмещения в рамках одной территориальной сети компьютерного и голосового трафиков. Так как рассматриваемая глобальная сеть передает данные в виде пакетов, то мультиплексоры «голос - данные», работающие на сети данного типа, упаковывают голосовую информацию в кадры или пакеты территориальной сети и передают их ближайшему коммутатору точно так же, как и любой конечный узел глобальной сети, то есть мост или маршрутизатор. Если глобальная сеть поддерживает приоритезацию трафика, то кадрам голосового трафика мультиплексор присваивает наивысший приоритет, чтобы коммутаторы обрабатывали и продвигали их в первую очередь. Приемный узел на другом конце глобальной сети также должен быть мультиплексором «голос - данные», который должен понять, что за тип данных находится в пакете - замеры голоса или пакеты компьютерных данных, - и отсортировать эти данные по своим выходам. Голосовые данные направляются офисной АТС, а компьютерные данные поступают через маршрутизатор в локальную сеть.
Так как конечные узлы глобальной сети должны передавать данные по каналу связи определенного стандарта, то каждое устройство типа DTE требуется оснастить устройством типа DCE (Data Circuit terminating Equipment) которое обеспечивает необходимый протокол физического уровня данного канала. В зависимости от типа канала для связи с каналами глобальных сетей используются DCE трех основных типов: модемы для работы по выделенным и коммутируемым аналоговым каналам, устройства DSU/CSU для работы по цифровым выделенным каналам сетей технологии TDM и терминальные адаптеры (ТА) для работы по цифровым каналам сетей ISDN. Устройства DTE и DCE обобщенно называют оборудованием, размещаемым на территории абонента глобальной сети - Customer Premises Equipment, CPE. Поэтому в глобальной сети обычно строго описан и стандартизован интерфейс «пользователь-сеть» (User-to-Network Interface, UNI). Это необходимо для того, чтобы пользователи могли без проблем подключаться к сети с помощью коммуникационного оборудования любого производителя, который соблюдает стандарт UNI данной технологии (например, Х.25). Протоколы взаимодействия коммутаторов внутри глобальной сети, называемые интерфейсом «сеть-сеть»(Network-to-Network Interface, NNI) , стандартизуются не всегда. Считается, что организация, создающая глобальную сеть, должна иметь свободу действий, чтобы самостоятельно решать, как должны взаимодействовать внутренние узлы сети между собой. В связи с этим внутренний интерфейс, в случае его стандартизации, носит название «сеть-сеть», а не «коммутатор-коммутатор», подчеркивая тот факт, что он должен использоваться в основном при взаимодействии двух территориальных сетей различных операторов

1.3 Сетевые технологии. Глобальные сети с коммутацией каналов
Глобальные сети Wide Area Networks (WAN), которые относятся к территориальными компьютерными сетями, предназначены, как и локальные сети для предоставления услуг, но значительно большему количеству пользователей, находящихся на большой территории.
Методы коммутации: В глобальных сетях существует три принципиально различные схемы коммутации:

    коммутация каналов
    коммутация сообщений
    коммутация пакетов
Коммутация каналов в глобальных сетях – процесс, который по запросу осуществляет соединение двух или более станций данных и обеспечивает монопольное использование канала передачи данных до тех пор, пока не произойдет разъединение. Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой – коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети.
Коммутация сообщений в глобальных сетях – процесс пересылки данных, включающий прием, хранение, выбор исходного направления и дальнейшую передачу сообщений без нарушения их целостности. Используются в тех случаях, когда не ожидается немедленной реакции на сообщение. Сообщения передаются между транзитными компьютерами сети с временной буферизацией их на дисках каждого компьютера.
Сообщениями - называются данные, объединенные смысловым содержанием, имеющие определенную структуру и пригодные для обработки, пересылки или использования.
Источниками сообщений могут быть голос, изображения, текст, данные. Для передачи звука традиционно используется телефон, изображений – телевидение, текста – телеграф (телетайп), данных – вычислительные сети. Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы online. При существенных задержках с запоминанием информации в промежуточных узлах имеем режим offline.

1.3.1 Глобальные сети с коммутацией пакетов
Коммутация пакетов в глобальных сетях – это коммутация сообщений, представляемых в виде адресуемых пакетов, когда канал передачи данных занят только во время передачи пакета и по ее завершению освобождается для передачи других пакетов. Коммутаторы сети, в роли которых выступают шлюзы и маршрутизаторы, принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге станции назначения. В глобальных сетях для передачи информации применяются следующие виды коммутации:
- коммутация каналов (используется при передаче аудиоинформации по обычным телефонным линиям связи;
- коммутация сообщений (применяется в основном для передачи электронной почты, в телеконференциях, электронных новостях);
- коммутация пакетов (для передачи данных, в настоящее время используется также для передачи аудио - и видеоинформации)
Достоинством сетей коммутации каналов является простота реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей. При коммутации сообщений передача данных (сообщения) осуществляется после освобождения канала, пока оно не дойдет до адресата. Каждый сервер производит прием, проверку, сборку, маршрутизацию и передачу сообщения.

2. СЕТЬ INTERNET
2.1 Создание и развитие Internet

    Структура и основные принципы построения сети Интернет:

Internet – всемирная информационная компьютерная сеть, представляющая собой объединение множества региональных компьютерных сетей и компьютеров, обменивающих друг с другом информацией по каналам общественных телекоммуникаций.
Информация в Internet хранится на серверах. Серверы имеют свои адреса и управляются специализированными программами. Они позволяют пересылать почту и файлы, производить поиск в базах данных и выполнять другие задачи. Обмен информацией между серверами сети выполняется по высокоскоростным каналам связи (выделенным телефонным линиям, оптоволоконным и спутниковым каналам связи).Доступ отдельных пользователей к информационным ресурсам Internet обычно осуществляется через-провайдера.
Провайдер - поставщик сетевых услуг – лицо или организация предоставляющие услуги по подключению к компьютерным сетям. В качестве провайдера выступает некоторая организация, имеющая модемный пул для соединения с клиентами и выхода во всемирную-паутину.
Основными ячейками глобальной сети являются локальные вычислительные сети. Если некоторая локальная сеть непосредственно подключена к глобальной, то и каждая рабочая станция этой сети может быть подключена к ней. Существуют также компьютеры, которые непосредственно подключены к глобальной сети. Они называются хост - компьютерами (host - хозяин). Хост – это любой компьютер, являющийся постоянной частью Internet, т.е. соединенный по Internet – протоколу с другим хостом, который в свою очередь, соединен с другим, и так далее.

Ри с. 2 Структура глобальной сети Internet

Для подсоединения линий связи к компьютерам используются специальные электронные устройства, которые называются сетевыми платами, сетевыми адаптерами(модемами).
Практически все услуги Internet построены на принципе клиент-сервер. Вся информация в Интернет хранится на серверах. Обмен информацией между серверами осуществляется по высокоскоростным каналам связи или магистралям. Серверы, объединенные высокоскоростными магистралями, составляют базовую часть сети Интернет. Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров (Internet Service Provider - ISP), которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны. Сети национальных провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet. Передача информации в Интернет обеспечивается благодаря тому, что каждый компьютер в сети имеет уникальный адрес (IP-адрес), а сетевые протоколы обеспечивают взаимодействие разнотипных компьютеров, работающих под управлением различных операционных систем. В основном в Интернет используется семейство сетевых протоколов (стек) TCP/IP. На канальном и физическом уровне стек TCP/IP поддерживает технологию Ethernet, FDDI и другие технологии. Основой семейство протоколов TCP/IP является сетевой уровень, представленный протоколом IP, а также различными протоколами маршрутизации. Этот уровень обеспечивает перемещение пакетов в сети и управляет их маршрутизацией. Размер пакета, параметры передачи, контроль целостности осуществляется на транспортном-уровне-TCP.
Прикладной уровень объединяет все службы, которые система предоставляет пользователю. К основным прикладным протоколам относятся: протокол удаленного досткпа telnet, протокол передачи файлов FTP, протокол передачи гипертекста HTTP, протоколы электронной почты: SMTP, POP, IMAP, MIME.
2.2 Способы доступа в Internet
В настоящее время известны следующие способы доступа в Интернет:

1. Dial-Up (когда компьютер пользователя подключается к серверу провайдера, используя телефон)– коммутируемый доступ по аналоговой телефонной сети скорость передачи данных до 56 Кбит/с;
2. DSL (Digital Subscriber Line) - семейство цифровых абонентских линий, предназначенных для организации доступа по аналоговой телефонной сети, используя кабельный модем. Эта технология (ADSL, VDSL, HDSL, ISDL, SDSL, SHDSL, RADSL под общим названием xDSL) обеспечивает высокоскоростное соединение до 50 Мбит/с (фактическая скорость до 2 Мбит/с). Основным преимуществом технологий xDSL является возможность значительно увеличить скорость передачи данных по телефонным проводам без модернизации абонентской телефонной линии. Пользователь получает доступ в сеть Интернет с сохранением обычной работы телефонной связи;
3. ISDN - коммутируемый доступ по цифровой телефонной сети. Главная особенность использования ISDN - это высокая скорость передачи информации, по сравнению с Dial-Up доступом. Скорость передачи данных составляет 64 Кбит/с при использовании одного и 128 Кбит/с, при использовании двух каналов связи;
4. Доступ в Интернет по выделенным линиям (аналоговым и цифровым). Доступ по выделенной линии - это такой способ подключения к Интернет, когда компьютер пользователя соединен с сервером провайдера с помощью кабеля (витой пары) и это соединение является постоянным, т.е. некоммутируемым, и в этом главное отличие от обычной телефонной связи.
5. Доступ в Интернет по локальной сети (Fast Ethernet). Подключение осуществляется с помощью сетевой карты (10/100 Мбит/с) со скоростью передачи данных до 1 Гбит/с на магистральных участках и 100 Мбит/сек для конечного пользователя. Для подключения компьютера пользователя к Интернет в квартиру подводится отдельный кабель (витая пара), при этом телефонная линия-свободна.
6. Спутниковый доступ в Интернет или спутниковый Интернет (DirecPC, Europe Online). Спутниковый доступ в Интернет бывает двух видов - ассиметричный и симметричный:
- Обмен данными компьютера пользователя со спутником двухсторонний;
- Запросы от пользователя передаются на сервер спутникового оператора через любое доступное наземное подключение, а сервер передает данные пользователю со спутника. Максимальная скорость приема данных до 52,5 Мбит/с
7. Доступ в Интернет с использованием каналов кабельной телевизионной сети, скорость приема данных от 2 до 56 Мб/сек. Кабельный Интернет (“coax at a home”). В настоящее время известны две архитектуры передачи данных это симметричная и асимметричная архитектуры. Кроме того, существует два способа подключения: а) кабельный модем устанавливается отдельно в каждой квартире пользователей; б) кабельный модем устанавливается в доме, где живет сразу несколько пользователей услуг Интернета.

8. Беспроводные технологии последней мили:

    WiFi
    WiMax
    RadioEthernet
    MMDS
    LMDS
    Мобильный GPRS – Интернет
WiFi (Wireless Fidelity - точная передача данных без проводов) – технология широкополосного доступа к сети Интернет. Скорость передачи информации для конечного абонента может достигать 54 Мбит/с. Радиус их действия не превышает 50 – 70 метров. Беспроводные точки доступа применяются в пределах квартиры или в общественных местах крупных городов.
WiMAX (Worldwide Interoperability for Microwave Access), аналогично WiFi - технология широкополосного доступа к Интернет. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. В настоящее время WiMAX частично удовлетворяет условиям сетей 4G, основанных на пакетных протоколах передачи данных. К семейству 4G относят технологии, которые позволяют передавать данные в сотовых сетях со скоростью выше 100 Мбит/сек. и повышенным качеством голосовой связи. MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50-60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал. LMDS (Local Multipoint Distribution System) - это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу, одна базовая станция позволяет охватить район радиусом в несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами (RadioEthernet). Скорость передачи данных до 45 Мбит/c. Мобильный GPRS – Интернет. Для пользования услугой "Мобильный Интернет" при помощи технологии GPRS необходимо иметь телефон со встроенным GPRS - модемом и компьютер. Технология GPRS обеспечивает скорость передачи данных до 114 Кбит/с. При использовании технологии GPRS тарифицируется не время соединения с Интернетом, а суммарный объем переданной и полученной информации. Вы сможете просматривать HTML-страницы, перекачивать файлы, работать с электронной почтой и любыми другими ресурсами Интернет. Технология GPRS - это усовершенствование базовой сети GSM или протокол пакетной коммутации для сетей стандарта GSM. EDGE является продолжением развития сетей GSM/GPRS. Технология EDGE (улучшенный GPRS или EGPRS) обеспечивает более высокую скорость передачи данных по сравнению с GPRS (скорость до 200 Кбит/сек). EDGE (2,5 G) – это первый шаг на пути к 3G-технологии.

Мобильный CDMA - Internet. Сеть стандарта CDMA - это стационарная и мобильная связь, а также скоростной мобильный интернет. Для пользования услугой "Мобильный Интернет" при помощи технологии CDMA необходимо иметь телефон со встроенным CDMA - модемом или CDMA модем и компьютер. Технология CDMA обеспечивает скорость передачи данных до 153 Кбит/с или до 2400 Кбит/с - по технологии EV-DO Revision 0. В настоящее время технология CDMA предоставляет услуги мобильной связи третьего поколения. Технологии мобильной связи 3G (third generation - третье поколение) - набор услуг, который обеспечивает как высокоскоростной мобильный доступ к сети Интернет, так и организовывает видеотелефонную связь и мобильное телевидение. Мобильная связь третьего поколения строится на основе пакетной передачи данных. Сети третьего поколения 3G работают в диапазоне около 2 ГГц, передавая данные со скоростью до 14 Мбит/с. .
9. В настоящее время для " последних метров" доступа в Internet применяются технологии Home PNA (HPNA) и HomePlug. Доступ в Интернет по выделенным линиям Home PNA или HPNA (телефонным линиям) и доступ через бытовую электрическую сеть напряжением 220 вольт. Обычно доступ к Интернету по выделенным линиям Home PNA и HomePlug комбинируется с такими методами доступа как DSL, WiFi, и другими, т.е. для "последних метров" доступа применяются технологии Стандарт HomePlug 1.0 доступ к Интернет через бытовую электрическую сеть поддерживает скорость передачи до 14 Мбит/с. максимальная протяжённость между узлами до 300 м. Компания Renesas, выпустила модем в виде штепсельной вилки для передачи данных по электросетям. Технология PLС (Power Line Communication) позволяет передавать данные по высоковольтным линиям электропередач, без дополнительных линий связи. Компьютер подключается к электрической сети и выходит в Интернет через одну и ту же розетку. Для подключения к домашней сети не требуется никаких дополнительных кабелей. К домашней сети можно подключить различное оборудование: компьютеры, телефоны, охранную сигнализацию, холодильники и т.д.

2.3 Адресация в сети Internet
Основным протоколом сети Интернет является сетевой протокол TCP/IP. Каждый компьютер, в сети TCP/IP (подключенный к сети Интернет), имеет свой уникальный IP-адрес или IP – номер. Адреса в Интернете могут быть представлены как последовательностью цифр, так и именем, построенным по определенным правилам. Компьютеры при пересылке информации используют цифровые адреса, а пользователи в работе с Интернетом используют в основном имена.
Цифровые адреса в Интернете состоят из четырех чисел, каждое из которых не превышает двухсот пятидесяти шести. При записи числа отделяются точками, например: 195.63.77.21. Такой способ нумерации позволяет иметь в сети более четырех миллиардов компьютеров. Для отдельного компьютера или локальной сети, которые впервые подключаются к сети Интернет, специальная организация, занимающейся администрированием доменных имен, присваивает IP – номера. Первоначально в сети Internet применялись IP – номера, но когда количество компьютеров в сети стало больше чем 1000, то был принят метод связи имен и IP – номеров, который называется сервер имени домена (Domain Name Server, DNS). Сервер DNS поддерживает список имен локальных сетей и компьютеров и соответствующих им IP – номеров. В Интернете применяется так называемая доменная система имен. Каждый уровень в такой системе называется доменом. Типичное имя домена состоит из нескольких частей, расположенных в определенном порядке и разделенных точками В Интернете доменная система имен использует принцип последовательных уточнений также как и в обычных почтовых адресах - страна, город, улица и дом, в который следует доставить письмо.
Доменная система образования адресов гарантирует, что во всем Интернете больше не найдется другого компьютера с таким же адресом. В системе адресов Интернета приняты домены, представленные географическими регионами. например: Украина – ua; Франция - fr; Канада - са; США - us; Россия - ru. Существуют и домены, разделенные по тематическим признакам, например:
Учебные заведения – edu; Правительственные учреждения – gov; Коммерческие организации - com.

В последнее время добавлены новые зоны, например: biz, info, in, .cn и так далее. При работе в Internet используются не доменные имена, а универсальные указатели ресурсов, называемые URL (Universal Resource Locator). URL - это адрес любого ресурса (документа, файла) в Internet, он указывает, с помощью какого протокола следует к нему обращаться, какую программу следует запустить на сервере и к какому конкретному файлу следует обратиться на сервере.

2.4 Семейство протоколов TCP/IP
Протоколы обмена маршрутной информацией стека TCP/IP
Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:

    дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
    алгоритм состояния связей (Link State Algorithms, LSA).
В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами. Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.
Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP. Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто. Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть. Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.
Дистанционно-векторный протокол RIP
Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell. В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы - идентификаторы. Протокол RIP широко использует понятие "вектор расстояний". Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах. Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл - "связи нет". Таким значением в протоколе RIP является число 16.
и т.д.................

Цель: ознакомиться со структурой и основными принципами работы всемирной сети Интернет, с базовыми протоколами Интернет и системой адресации.

Архитектура и принципы работы сети Интернет

Глобальные сети, охватывая миллионы людей, полностью изменили процесс распространения и восприятия информации.

Глобальные сети (Wide Area Network, WAN) – это сети, предназначенные для объединения отдельных компьютеров и локальных сетей, расположенных на значительном удалении (сотни и тысячи километров) друг от друга. Глобальные сети объединяют пользователей, расположенных по всему миру, используя при этом самые разнообразные каналы связи.

Современный Интернет - весьма сложная и высокотехнологичная система, позволяющая пользователю общаться с людьми, находящимися в любой точке земного шара, быстро и комфортно отыскивать любую необходимую информацию, публиковать для всеобщего сведения данные, которые он хотел бы сообщить всему миру.

В действительности Internet не просто сеть, - это структура, объединяющая обычные сети. Internet - это «сеть сетей».

Чтобы описать сегодняшний Internet , полезно воспользоваться строгим определением.

В своей книге « The Matrix : Computer Networks and Conferencing Systems Worldwide » Джон Квотерман описывает Internet как «метасеть, состоящую из многих сетей, которые работают согласно протоколам семейства TCP/IP, объединены через шлюзы и используют единое адресное пространство и пространство имен» .

В Internet нет единого пункта подписки или регистрации, вместо этого вы контактируете с поставщиком услуг, который предоставляет вам доступ к сети через местный компьютер. Последствия такой децентрализации с точки зрения доступности сетевых ресурсов также весьма значительны. Среду передачи данных в Internet нельзя рассматривать только как паутину проводов или оптоволоконных линий. Оцифрованные данные пересылаются через маршрутизаторы , которые соединяют сети и с помощью сложных алгоритмов выбирают наилучшие маршруты для информационных потоков (рис.1).

В отличие от локальных сетей, в составе которых имеются свои высокоскоростные каналы передачи информации, глобальная (а так­же региональная и, как правило, корпоративная ) сеть включает под­сеть связи (иначе: территориальную сеть связи, систему передачи ин­формации), к которой подключаются локальные сети, отдельные ком­поненты и терминалы (средства ввода и отображения информации) (рис. 2).

Подсеть связи состоит из каналов передачи информации и коммуни­кационных узлов, которые предназначены для передачи данных по сети, выбора оптимального маршрута передачи информации, комму­тации пакетов и реализации ряда других функций с помощью компь­ютера (одного или нескольких) и соответствующего программного обеспечения, имеющихся в коммуникационном узле. Компьютеры, за которыми работают пользователи-клиенты, называются рабочими станциями , а компьютеры, являющиеся источниками ресурсов сети, предоставляемых пользователям, называются серверами . Такая струк­тура сети получила название узловой .

Рис.1 Схема взаимодействия в сети Интернет

Интернет – это глобальная информационная система, которая:

· логически взаимосвязана пространством глобальных уникальных адресов, основанных на Интернет-протоколе (IP);

· способна поддерживать коммуникации с использованием семейства протокола управления передачей - TCP/IP или его последующих расширений/преемников и/или других IP-совместимых протоколов;

· обеспечивает, использует или делает доступными на общественной или частной основе высокоуровневые услуги, надстроенные над описанной здесь коммуникационной и иной связанной с ней инфраструктурой.

Инфраструктура Интернет (рис.2):

1.магистральный уровень (система связанных высокоскоростных телекоммуникационных серверов).

2.уровень сетей и точек доступа (крупные телекоммуникационные сети), подключенных к магистрали.

3.уровень региональных и других сетей.

4.ISP – интернет-провайдеры.

5.пользователи.

К техническим ресурсам сети Интернет относятся компьютерные узлы, маршрутизаторы, шлюзы, каналы связи и др.


Рис.2 Инфраструктура сети Интернет

В основу архитектуры сетей положен многоуровневый принцип передачи сообщений . Формирование сообщения осуществляется на самом верхнем уровне модели ISO / OSI .. Затем (при передаче) оно после­ довательно проходит все уровни системы до самого нижнего, где и передается по каналу связи адресату. По мере прохождения каждого из уровней системы сообщение трансформируется, разбивается на сравнительно короткие части, которые снабжаются дополнительны­ ми заголовками, обеспечивающими информацией аналогичные уров­ ни на узле адресата. В этом узле сообщение проходит от нижнего уровня к верхнему, снимая с себя заголовки. В результате адресат принимает сообщение в первоначальном виде.

В территориальных сетях управление обменом данных осуществ­ ляется протоколами верхнего уровня модели ISO / OSI . Независимо от внутренней конструкции каждого конкретного протокола верхнего уровня для них характерно наличие общих функций: инициализация связи, передача и прием данных, завершение обмена. Каждый прото­ кол имеет средства для идентификации любой рабочей станции сети по имени, сетевому адресу или по обоим этим атрибутам. Активиза­ ция обмена информацией между взаимодействующими узлами начи­ нается после идентификации узла адресата узлом, инициирующим обмен данными. Инициирующая станция устанавливает один из ме­ тодов организации обмена данными: метод дейтаграмм или метод сеансов связи. Протокол предоставляет средства для приема/переда­ чи сообщений адресатом и источником. При этом обычно накладыва­ ются ограничения на длину сообщений.

T CP / IP - технология межсетевого взаимодействия

Наиболее распространенным протоколом управления обменом данных является протокол TCP/IP. Главное отличие сети Internet от других сетей заключается именно в ее протоколах TCP/IP , охватыва­ ющих целое семейство протоколов взаимодействия между компью­ терами сети. TCP/IP - это технология межсетевого взаимодействия, технология Internet . Поэтому г лобальная сеть, объединяющая мно­ жество сетей с технологией TCP/IP , называется Internet .

Протокол TCP/IP - это семейство программно реализованных протоколов старшего уровня, не работающих с аппаратными пре­ рываниями. Технически протокол TCP/IP состоит из двух частей - IP и TCP .

Протокол IP ( Internet Protocol - межсетевой протокол) является главным протоколом семейства, он реализует распространение ин­ формации в IP -сети и выполняется на третьем (сетевом) уровне моде ли ISO / OSI . Протокол IP обеспечивает дейтаграммную доставку паке­ тов, его основная задача - маршрутизация пакетов. Он не отвечает за надежность доставки информации, за ее целостность, за сохране­ ние порядка потока пакетов. Сети, в которых используется протокол IP , называются IP -сетями. Они работают в основном по аналоговым каналам (т.е. для подключения компьютера к сети требуется IP -мо­ дем) и являются сетями с коммутацией пакетов. Пакет здесь называ­ ется дейтаграммой.

Высокоуровневый протокол TCP ( Transmission Control Protocol - протокол управления передачей) работает на транспортном уровне и частично - на сеансовом уровне. Это протокол с установлением ло­ гического соединения между отправителем и получателем. Он обес­ печивает сеансовую связь между двумя узлами с гарантированной доставкой информации, осуществляет контроль целостности переда­ ваемой информации, сохраняет порядок потока пакетов.

Для компьютеров протокол TCP/IP - это то же, что правила раз­ говора для людей. Он принят в качестве официального стандарта в сети Internet , т.е. сетевая технология TCP/IP де-факто стала техноло­ гией всемирной сети Интернет.

Ключевую часть протокола составляет схема маршрутизации паке­тов, основанная на уникальных адресах сети Internet . Каждая рабо­ чая станция, входящая в состав локальной или глобальной сети, име­ ет уникальный адрес, который включает две части, определяющие адрес сети и адрес станции внутри сети. Такая схема позволяет пере­давать сообщения как внутри данной сети, так и во внешние сети.

АДРЕСАЦИЯ В СЕТИ ИНТЕРНЕТ

Основные протоколы сети Интернет

Работа сети Internet основана на использовании семейств коммуникационных протоколов TCP/IP (Transmission Control Protocol / Internet Protocol ). TCP/IP используется для передачи данных как в глобальной сети Internet , так и во многих локальных сетях.

Название TCP/IP определяет семейство протоколов передачи данных сети. Протокол - это набор правил, которых должны придерживаться все компании, чтобы обеспечить совместимость производимого аппаратного и программного обеспечения. Эти правила гарантируют совместимость производимого аппаратного и программного обеспечения. Кроме того, TCP /IP – это гарантия того, что ваш персональный компьютер сможет связаться по сети Internet с любым компьютером в мире, также работающим с TCP/IP. При соблюдении определенных стандартов для функционирования всей системы не имеет значения, кто является производителем программного обеспечения или аппаратных средств. Идеология открытых систем предполагает использование стандартных аппаратных средств и программного обеспечения. TCP/IP - открытый протокол и вся специальная информация издана и может быть свободно использована.

Различный сервис, включаемый в TCP/IP, и функции этого семейства протоколов могут быть классифицированы по типу выполняемых задач. Упомянем лишь основные протоколы, так как общее их число насчитывает не один десяток:

·транспортные протоколы - управляют передачей данных между двумя машинами:

·TCP / IP (Transmission Control Protocol ),

·UDP (User Datagram Protocol );

·протоколы маршрутизации - обрабатывают адресацию данных, обеспечивают фактическую передачу данных и определяют наилучшие пути передвижения пакета:

· IP (Internet Protocol),

· ICMP (Internet Control Message Protocol),

· RIP (Routing Information Protocol)

· и другие;

·протоколы поддержки сетевого адреса - обрабатывают адресацию данных, обеспечивают идентификацию машины с уникальным номером и именем:

· DNS (Domain Name System),

· ARP (Address Resolution Protocol)

· и другие;

·протоколы прикладных сервисов - это программы, которые пользователь (или компьютер) использует для получения доступа к различным услугам:

·FTP (File Transfer Protocol ),

· TELNET ,

· HTTP (HyperText Transfer Protocol)

·NNTP (NetNewsTransfer Protocol)

·и другие

Сюда включается передача файлов между компьютерами, удаленный терминальный доступ к системе, передача гипермедийной информации и т.д.;

·шлюзовые протоколы помогают передавать по сети сообщения о маршругазации и информацию о состоянии сети, а так же обрабатывать данные для локальных сетей:

· EGP (Exterior Gateway Protocol),

· GGP (Gateway-to-Gateway Protocol),

· IGP (Interior Gateway Protocol);

·другие протоколы – используются для передачи сообщений электронной почты, при работе с каталогами и файлами удаленного компьютера и так далее:

· SMTP (Simple Mail Transfer Protocol),

·NFS (Network File System ).

IP -адресация

Теперь подробнее остановимся на понятии IP -адреса.

Каждый компьютер в Internet (включая любой ПК, когда он устанавливает сеансовое соединение с провайдером по телефонной линии) имеет уникальный адрес, называемый IP -адрес .

IP -адрес имеет длину 32 бита и состоит из четырех частей по 8 бит, именуемых в соответствии с сетевой терминологией октетами (octets ) . Это значит, что каждая часть IP-адреса может принимать значение в пределах от 0 до 255. Четыре части объединяют в запись, в которой каждое восьмибитовое значение отделяется точкой. Когда речь идет о сетевом адресе, то обычно имеется в виду IP -адрес.

Если бы использовались все 32 бита в IP -адресе, то получилось бы свыше четырех миллиардов возможных адресов - более чем достаточно для будущего расширения Internet . Однако некоторые комбинации битов зарезервированы для специальных целей, что уменьшает число потенциальных адресов. Кроме того, 8-битные четверки сгруппированы специальными способами в зависимости от типа сети, так что фактическое число адресов еще меньше.

С понятием IP -адреса тесно связано понятие хоста (host ) . Некоторые просто отождествляют понятие хоста с понятием компьютера, подключенного к Internet . В принципе, это так, но в общем случае под хостом понимается любое устройство, использующее протокол TCP/IP для общения с другим оборудованием. То есть кроме компьютеров, это могут быть специальные сетевые устройства - маршрутизаторы (routers ), концентраторы (habs ) и другие. Эти устройства так же обладают своими уникальными I Р-адресами,- как и компьютеры узлов сети пользователей.

ЛюбойIP -адрес состоит из двух частей: адреса сети (идентификатора сети, Network ID ) и адреса хоста (идентификатора хоста, Host ID ) в этой сети . Благодаря такой структуре IP -адреса компьютеров в разных сетях могут иметь одинаковые номера. Но так как адреса сетей различны, то эти компьютеры идентифицируются однозначно и не могут быть перепутаны друг с другом.

IP-адреса выделяются в зависимости от размеров организации и типа ее деятельности. Если это небольшая организация, то, скорее всего в ее сети немного компьютеров (и, следовательно, IP -адресов). Напротив, у большой корпорации могут быть тысячи (а то и больше) компьютеров, объединенных во множество соединенных между собой локальных сетей. Для обеспечения максимальной гибкости IP -адреса разделяются на классы: А, В и С. Еще существуют классы D и Е , но они используются для специфических служебных целей.

Итак, три класса IP -адресов позволяют распределять их в зависимости от размера сети организации. Поскольку 32 бита - допустимый полный размер IP -адреса, то классы разбивают четыре 8-битные части адреса на адрес сети и адрес хоста в зависимости от класса.

Адрес сети класса A определяется первым октетом IP -адреса (считается слева направо). Значение первого октета, находящееся в пределах 1-126, зарезервировано для гигантских транснациональных корпорации и крупнейших провайдеров. Таким образом, в классе А в мире может существовать всего лишь 126 крупных компаний, каждая из которых может содержать почти 17 миллионов компьютеров.

Класс B использует 2 первых октета в качестве адреса сети, значение первого октета может принимать значение в пределах 128-191. В каждой сети класса В может быть около 65 тысяч компьютеров, и такие сети имеют крупнейшие университеты и другие большие организации.

Соответственно, в классе C под адрес сети отводится уже три первых октета, а значение первого октета может быть в пределах 192-223. Это самые распространенные сети, их число может превышать более двух миллионов, а число компьютеров (хостов) в каждой сети - до 254. Следует отметить, что «разрывы» в допустимых значениях первого октета между классами сетей появляются из-за того, что один или несколько битов зарезервированы в начале IP -адреса для идентификации класса.

Если любой IP -адрес символически обозначить как набор октетов w .x .y .z , то структуру для сетей различных классов можно представить в таблице 1.

Всякий раз, когда посылается сообщение какому-либо хост-компьютеру в Internet , IP -адрес используется для указания адреса отправителя и получателя. Конечно, пользователям не придется самим запоминать все IP -адреса, так как для этого существует специальный сервис TCP/IP, называемый Domain Name System (Доменная система имен)

Таблица 1. Структура IP-адресов в сетях различных классов

Класс сети

Значение первого октета (W)

Октеты номера сети

Октеты номера хоста

Число возможных сетей

Число хостов в таких сетях

1-126

x.y.z

128(2 7)

16777214(2 24)

128-191

w.x

y.z

16384(2 14)

65536(2 16)

192-223

w.x.y

2097151(2 21)

254(2 8)

Понятие маски подсети

Для того чтобы отделить идентификатор сети от идентификатора хоста, применяется специальное 32-битное число, называемое маской подсети (subnet mask ). Чисто внешне маска подсети представляет собой точно такой же набор из четырех октетов, разделенных между собой точками, как и любой IP -адрес. В таблице 2 приведены значения маски подсети для сетей класса A , B , C , используемые по умолчанию.

Таблица 2. Значение маски подсети (по умолчанию)

Класс сети

Значение маски в битах (двоичное представление)

Значение маски в десятичном виде

11111111 00000000 00000000 00000000

255.0.0.0

11111111 11111111 00000000 00000000

255.255.0,0

11111111 11111111 1111111100000000

255,255.255.0

Маска применяется также для логического разделения больших IP -сетей на ряд подсетей меньшего масштаба. Представим, к примеру, что в Сибирском Федеральном Университете, обладающего сетью класса B , имеется 10 факультетов и в каждом из них установлено по 200 компьютеров (хостов). Применив маску подсети 255.255.0.0, эту сеть можно разделить на 254 отдельных подсетей с числом хостов до 254 в каждой.

Значения маски подсети, применяемые по умолчанию, не являются единственно возможными. К примеру, системный администратор конкретной IP -сети может использовать и другое значение маски подсети для выделения лишь некоторых бит в октете идентификатора хоста.

Как зарегистрировать IP -сеть своей организации?

На самом деле, конечные пользователи не имеют отношения к этой задаче, которая ложиться на плечи системного администратора данной организации. В свою очередь, в этом ему оказывают содействие провайдеры Internet , обычно беря на себя все регистрационные процедуры в соответствующей международной организации, называемой InterNIC (Network Information Center ). Например, Сибирский федеральный университет желает получить адрес электронной почты в Internet , содержащий строку sfu -kras .ru . Такой идентификатор, включающий название фирмы, позволяет отправителю электронной почты определить компанию адресата.

Чтобы получить один из этих уникальных идентификаторов, называемых доменным именем, компания или провайдер посылает запрос в орган, который контролирует подключение к Internet - InterNIC . Если InterNIC (или орган, уполномоченный им для такой регистрации в данной стране) утверждает имя компании, то оно добавляется в базу данных Internet . Доменные имена должны быть уникальны, чтобы предотвратить ошибки. Понятие домена и его роль в адресации сообщений, пересылаемых по Internet , будут рассмотрены ниже. Дополнительную информацию о работе InterNIC можно узнать, посетив в Internet страницу http://rs.internic.ru .

ДОМЕННАЯ СИСТЕМА ИМЕН

Доменные имена

Кроме IP-адресов, для идентификации конкретных хостов в Сети используется так называемое доменное имя хоста (Domain host name) . Так же, как и IP-адрес, это имя является уникальным для каждого компьютера (хоста) , подключенного к Internet, - только здесь вместо цифровых значений адреса применяются слова.

В данном случае понятие домена означает совокупность хостов Internet, объединенных по какому-то признаку (например, по территориальному, когда речь идет о домене государства).

Разумеется, использование доменного имени хоста было введено только для того, чтобы облегчить пользователям задачу запоминания имен нужных им компьютеров. Сами компьютеры, по понятным причинам, в таком сервисе не нуждаются и вполне обходятся IP -адресами. Но вы только представьте, что вместо таких звучных имен как, www . microsoft . com или www . ibm . com вам пришлось бы запоминать наборы цифр, - 207.46.19.190 или 129.42.60.216 соответственно.

Если говорить о правилах составления доменных имен, то здесь нет столь жестких ограничений по количеству составных частей имени и их значениям, как в случае IP -адресов. Например, если в ХТИ – Филиале СФУ существует хост с именем khti , входящий в домен республики Хакасия khakassia , а тот, в свою очередь входит в домен России ru , то доменное имя такого компьютера будет khti . khakassia . ru . В общем случае число составляющих доменного имени может быть различным и содержать от одной и более частей, например, rage . mp 3. apple . sda . org или www . ru .

Чаще всего доменное имя компании состоит из трех составляющих, первая часть - имя хоста, вторая - имя домена компании, и последняя - имя домена страны или имя одного из семи специальных доменов, обозначающих принадлежность хоста, организации определенного профиля деятельности (см. табл. 1). Так, если ваша компания называется «KomLinc », то чаще всего Web -сервер компании будет назван www .komlinc .ru (если это российская компания), или, к примеру, www .komlinc .com , если вы попросили провайдера зарегистрировать вас в основном международном домене коммерческих организаций.

Последняя часть доменного имени называется идентификатором домена верхнего уровня (например, . ru или . com ). Существует семь доменов верхнего уровня, установленных InterNIC .

Таблица 1. Международные домены верхнего уровня

Имя домена

Принадлежность хостов домена

ARPA

Пра-пра... бабушка Internet , сеть ARPANet (выходит из употребления)

СОМ

Коммерческие организации (фирмы, компании, банки и так далее)

GOV

Правительственные учреждения и организации

EDU

Образовательные учреждения

MIL

Военные учреждения

NET

«Сетевые» организации, управляющие Internet или входящие в его структуру

ORG

Организации, которые не относятся ни к одной из перечисленных категорий

Исторически сложилось так, что эти семь доменов верхнего уровня по умолчанию обозначают факт географического расположения (принадлежащего к ним) хоста на территории США. Поэтому международный комитет InterNIC наряду с вышеперечисленными доменами верхнего уровня допускает применение доменов (специальных сочетаний символов) для идентификации иных стран, в которой находится организация-владелец данного хоста.

Итак, домены верхнего уровня подразделяютсяна организационные (см. табл.1)и территориаль­ные. Имеются двухбуквенные обозначения для всех стран мира: . ru - для России (пока в ходу и домен . su , объединяющий хосты на территории республик бывшего СССР), .са - для Канады, . uk - для Великобритании и т.д. Они обычно используются вместо одного из семи идентификаторов, перечисленных выше в таблице 1.

Территориальные домены верхнего уровня:

. ru (Russia )- Россия;

Su (Soviet Union ) - страны бывшего СССР, ныне ряд государств СНГ;

Uk (United Kingdom ) - Великобритания;

Ua (Ukraine ) - Украина;

Bg (Bulgaria ) - Болгария;

Hu (Hungary ) - Венгрия;

De (Deutchland ) - Германия, и др.

C полным списком всех доменных имен государств можно познакомиться на различных серверах в Internet .

Не все компании за пределами США имеют идентификаторы страны. В какой-то мере использование идентификатора страны или одного из семи идентификаторов, принятых в США, зависит от того, когда проводилась регистрация доменного имени компании. Так, компаниям, которые достаточно давно подключились к Internet (когда число зарегистрированных организаций было сравнительно невелико), был дан трехбуквенный идентификатор. Некоторые корпорации, работающие за пределами США, но регистрирующие доменное имя через американскую компанию, сами выбирают, использовать ли им идентификатор страны пребывания. Сегодня в России можно получить доменный идентификатор . com , для чего следует оговорить этот вопрос со своим провайдером Internet .

Как работают серверы DNS

Теперь поговорим о том, каким образом доменные имена преобразуются в понятные для компьютера IP -адреса.

Занимается этим Domain Name System (DNS , Доменная система имен) сервис, обеспечиваемый TCP/IP, который помогает в адресации сообщений. Именно благодаря работе DNS вы можете не запоминать IP -адрес, а использовать намного более простой доменный адрес. Система DNS транслирует символическое доменное имя компьютера в IP -адрес, находя запись в распределенной базе данных (хранящейся на тысячах компьютерах), соответствующую этому доменному имени. Стоит также отметить, что серверы DNS в русскоязычной компьютерной литературе часто называют «серверами имен».

Серверы имен корневой зоны

Хотя в мире насчитываются тысячи серверов имен, во главе всей системы DNS стоят девять серверов, названных серверами корневой зоны ( root zone servers ) . Серверы корневой зоны получили имена a . root _ server . net , b . root _ server . net и так далее вплоть до i . root _ server . net . Первый из них - a . root _ server . net - выступает в роли первичного сервера имен Internet , управляемого из информационного центра InterNIC , который регистрирует все домены, входящие в несколько доменов высшего уровня. Остальные серверы имен по отношению к нему вторичны, однако все хранят копии одних и тех же файлов. Благодаря этому любой из серверов корневой зоны может заменять и подстраховывать остальные.

На этих компьютерах размещена информация о хост-компьютерах серверов имен, обслуживающих семь доменов высшего уровня: .com , .edu , .mil , .gov , .net , .org и специального.arpa (рис.1). Любой из этих девяти серверов несет так же файл высшего уровня, как.uk (Великобритания), .de (Германия), .jp (Япония) и так далее.


Рис. 1. Иерархическая структура имен доменов Internet

В файлах корневой зоны содержатся все имена хост-компьютеров и IP -адреса серверов имен для каждого поддомена, входящего в домен высшего уровня. Другими словами, каждый корневой сервер располагает информацией обо всех доменах высшего уровня, а так же знает имя хост-компьютера и IP -адрес, по меньшей мере, одного сервера имен, обслуживающего каждый из вторичных доменов, входящих в любой домен высшего уровня. Для доменов иностранных государств в базе данных хранятся сведения по серверам имен для каждой страны. Например, в неком домене company . com файлы корневой зоны для домена содержат данные о сервере имен для любого адреса, заканчивающегося на company . com .

Кроме серверов имен корневой зоны существуют локальные серверы имен , установленные в доменах более низкого уровня. Локальный сервер имен кэширует список хост-компьютеров, поиск которых он производил в последнее время. Это устраняет необходимость постоянно обращаться в систему DNS с запросами о часто используемых хост-компьютерах. Кроме того, локальные серверы имен являются итерционными , а серверы корневой зоны - рекурсивными . Это значит, что локальный сервер имен будет повторять процедуру запроса информации о других серверах имен до тех пор, пока не получит ответа.

Корневые же серверы Internet , находящиеся на вершине структуры DNS , напротив, лишь выдают указатели на домены следующего уровня. Добраться до конца цепочки и получить требуемый IP -адрес - задача локального сервера имен. Чтобы решить ее, он должен спуститься по иерархической структуре, последовательно запрашивая у локальных серверов имен указатели на ее низшие уровни.

1. Принципы построения сети Интернет

Определение Интернета, данное Федеральным Советом по информационным сетям (Federal Networking Council), гласит: «Интернет - глобальная информационная система, части которой логически взаимосвязаны друг с другом посредством уникального адресного пространства, основанного на протоколе IP (Inetrnet Protocol) или его последующих расширениях, способная поддерживать связь посредством комплекса протоколов TCP/IP (Transmission Control Protocol/Internet Protocol), их последующих расширений или других совместимых с IP протоколов, и публично или частным образом обеспечивающая, использующая или делающая доступной коммуникационную службу высокого уровня». Другими словами, Интернет можно определить как взаимосвязь сетей, базирующуюся на едином коммуникационном протоколе - TCP/IP.

Основным и наиболее распространенным устройством доступа в Интернет для конечного пользователя является компьютер. Компьютер может находиться в любом месте, обладающем современными средствами коммуникации.

Доступ в Интернет, который предоставляется организациями, называемыми провайдерами Интернет (Internet Service Provider), пользователь может получить через модем или локальную сеть организации. Провайдер имеет одно или несколько подключений к магистральным каналам или крупным сетям, которые образуют главную «кровеносную» систему Интернет. При этом предлагается коммутируемая связь (dial-up диалап) или подключение по выделенной линии. В любом случае должна быть линия связи любого вида.

Границы Интернет довольно расплывчаты. Любой компьютер, подключенный к нему, уже можно считать его частью, и уж тем более это относится к локальной сети предприятия, имеющего выход в Интернет. Web-серверы, на которых располагаются информационные ресурсы, могут находиться в любой части Интернет (у провайдера, в локальной сети предприятия). Главное условие: они должны быть подключены к Интернету, чтобы пользователи Сети могли получить доступ к их службам. В качестве служб могут выступать электронная почта, FTP, WWW и другие. Информационной составляющей служб являются самые разнообразные источники. Это могут быть данные, фотографии, звуковые фрагменты, видео: все то, к чему стремятся пользователи, и чего они достигают посредством подключения к Интернету.

Главное отличие сети Интернет от других сетей заключается именно в ее протоколах TCP/IP, охватывающих целое семейство протоколов взаимодействия между компьютерами сети. TCP/IP - это технология сети Интернет. Протокол TCP/IP состоит из двух частей - IP и TCP.

Протокол IP (Internet Protocol - межсетевой протокол) реализует распространение информации в IP-сети. Он обеспечивает доставку пакетов, его основная задача - маршрутизация пакетов.

Высокоуровневый протокол TCP (Transmission Control Protocol - протокол управления передачей) - это протокол с установлением логического соединения между отправителем и получателем. Он обеспечивает сеансовую связь между двумя узлами с гарантированной доставкой информации, осуществляет контроль целостности передаваемой информации, сохраняет порядок потока пакетов.

Будучи базовым протоколом TCP/IP имеет неоспоримые преимущества: открытость, масштабируемость, универсальность и простота использования, но у этого семейства протоколов есть и недостатки: проблема защиты информации, неупорядоченность передачи пакетов и невозможность отследить маршрут их продвижения, объем адресного пространства.

Для идентификации компьютеров (host-узлов), подключенных к Интернет, и межсетевой маршрутизации пакетов каждому из компьютеров присваивается уникальный четырехбайтный адрес (IP-адрес). Запись IP-адреса состоит из четырех сегментов, разделенных точками. Каждый сегмент представляет собой десятичное число в диапазоне от 0 до 255, что соответствует одному байту.

IP-адреса являются основным типом адресов, используемых для передачи пакетов между сетями. IP-пакет содержит два адреса - отправителя и получателя. Оба адреса статические, т.е. не меняются на протяжении всего пути пакета.

Для того чтобы обращение ко всем ресурсам Интернет было наиболее простым и прозрачным, в Интернет действует система доменных имен DNS. Она предназначена для того, чтобы любой ресурс, помимо уникального IP-адреса, имел легко запоминающееся доменное имя.

Служба доменных имен призвана соотносить IP-адреса с доменным именем машины, и наоборот. Доменное имя любого ресурса состоит из следующих основных частей: названия имени машины, собственного названия домена и названия зоны.

Например, www.rbk.ru (это доменное имя говорит, что ресурс расположен в географическом домене ru, имеет собственное название rbc и функциональное имя www, то есть выполняет функции WWW-сервера).

Имена зон условно можно разделить на «организационные» и «географические». В доменах первого уровня зарегистрированы следующие организационные зоны: com - коммерческие; edu - образовательные; gov - правительственные; mil - военные; net - организации, обеспечивающие работу сети; org - некоммерческие организации.

Каждая страна (государство) имеет свой географический домен из двух букв. Вот домены некоторых из стран: ca - Canada (Канада); fi - Finland (Финляндия); fr - France (Франция); jp - Japan (Япония); ru - Russia (Россия); ua - Ukraine (Украина); uk - United Kingdom (Англия).

Процессом оформления и поддержания доменных имен занимаются ряд специализированных организаций.

2. Службы Интернета

интернет платежный безопасность маркетинг

Службы Интернета - это системы, предоставляющие услуги пользователям Интернета. К ним относятся: электронная почта, WWW, телеконференции, списки рассылки, FTP, IRC, а также другие продукты, использующие Интернет как среду передачи информации.

Услуги, предоставляемые Интернетом, можно разделить на две основные категории.

1. Отложенные (off-line) - основным признаком этой группы является наличие временного перерыва между запросом и получением информации.

2. Прямые (on-line) - характерны тем, что информация по запросу возвращается немедленно. Если от получателя информации требуется немедленная реакция на нее, то такая услуга носит интерактивный характер.

Электронная почта

Самой первой и самой распространенной службой Интернета является электронная почта (e-mail). Эта служба предоставляет услуги отложенного чтения. Пользователь посылает сообщение, и адресат получает его на свой компьютер через некоторый промежуток времени.

Электронное письмо можно снабдить цифровой подписью и зашифровать. Скорость пересылки составляет в среднем несколько минут. Основными достоинствами электронной почты являются простота, дешевизна и универсальность. К недостаткам электронной почты можно отнести слабую защиту сообщений (возможность доступа третьих лиц).

Телеконференции

Телеконференции - вторая по распространенности служба Интернета, предоставляющая отложенные услуги.

Служба телеконференций состоит из множества тематических телеконференций - групп новостей (newsgroup), поддерживаемых серверами новостей. Сервер новостей - это компьютер, который может содержать тысячи групп новостей самых разнообразных тематик. Каждый сервер новостей, получивший новое сообщение, передает его всем узлам, с которыми он обменивается новостями. Группа новостей - это набор сообщений по определенной теме. Новости разделены по иерархически организованным тематическим группам, и имя каждой группы состоит из имен подуровней. Например, конференция comp.sys.linux.setup принадлежит группе «компьютеры», подгруппе «операционные системы», конкретнее - системе Linux, а именно - ее установке.

Существуют как глобальные иерархии, так и иерархии, локальные для какой-либо организации, страны или сети.

Доступ к группам новостей осуществляется через процедуру подписки, которая состоит в указании координат сервера новостей и выбора интересующих пользователя групп новостей.

В обсуждении темы телеконференции может участвовать множество людей, независимо от того, где они находятся физически. Обычно за порядком в конференциях следят специальные люди, так называемые модераторы.

Идея работы списка рассылки состоит в объединении под одним адресом электронной почты адресов многих людей - подписчиков списка рассылки. Когда письмо посылается на этот адрес, сообщение получают все подписчики данного списка рассылки.

В зависимости от числа подписчиков список рассылки обслуживается на сервере программами различной сложности.

Чаты

Под словом чат (от английского chat) подразумеваются службы Интернета, позволяющие проводить текстовые дискуссии в режиме реального времени. От традиционной формы разговора их отличает то, что они ведутся в текстовом виде - путем набора текста на клавиатуре. Самым популярным открытым стандартом, лежащим в основе чатов, является IRC (Internet Relay Chat).

Интернет-пейджеры

Промежуточное положение между электронной почтой и чатами по динамичности и интерактивности общения занимают Интернет-пейджеры или службы мгновенных сообщений. Интернет-пейджеры постепенно становятся одними из самых популярных средств общения в Сети и по широте использования скоро смогут достичь электронную почту. Службы мгновенных сообщений позволяют общаться в режиме реального времени, совмещая в себе преимущества электронной почты и телефона. Частью процесса обмена в подобных системах могут становиться текстовый диалог, передача графики, голосовая и видео связь, обмен файлами. Примером подобных программ служат ICQ, MSN, AOL Instant Messenger и другие подобные им.

FTP (file transfer protocol) - протокол передачи файлов, но при рассмотрении FTP как службы Интернета имеется в виду не просто протокол, а именно служба доступа к файлам в файловых архивах. Одна из причин достаточно высокой ее популярности объясняется огромным количеством информации, накопленной в FTP-архивах за десятилетия эксплуатации компьютерных систем. Другая причина кроется в простоте доступа, навигации и передачи файлов по FTP.

FTP - служба прямого доступа, требующая полноценного подключения к Интернету.

World Wide Web

WWW (World Wide Web) - служба прямого доступа, требующая полноценного подключения к Интернету и позволяющая интерактивно взаимодействовать с представленной на web-сайтах информацией. Это самая современная и удобная служба Интернета. Она основывается на принципе гипертекста и способна представлять информацию, используя все возможные мультимедийные ресурсы: видео, аудио, графику, текст и т.д. Взаимодействие осуществляется по принципу клиент-сервер с использованием протокола передачи гипертекста (Hyper Text Transfer Protocol, HTTP). С помощью протокола HTTP служба WWW позволяет обмениваться документами в формате языка разметки гипертекста - HTML (Hyper Text Markup Language), который обеспечивает надлежащее отображение содержимого документов в браузерах пользователей.

Принцип гипертекста, лежащий в основе WWW, состоит в том, что каждый элемент HTML-документа может являться ссылкой на другой документ или его часть. Ссылки WWW могут указывать не только на документы, свойственные службе WWW, но и на прочие службы и информационные ресурсы Интернета. Таким образом, программные средства WWW являются универсальными для различных служб Интернета, а сама информационная система WWW выполняет по отношению к ним интегрирующую функцию.

Необходимо подчеркнуть, что Интернет и WWW это не тождественные понятия. Узкое определение Интернета представляет его как взаимосвязь компьютерных сетей на базе семейства протоколов TCP/IP, в пространстве которой становится возможным функционирование протоколов более высокого уровня, в том числе протокола передачи гипертекста (HTTP) - протокола World Wide Web, гипертекстового сервиса доступа к удаленной информации. Кроме World Wide Web, на этом уровне (он называется прикладным или уровнем приложений) действуют и другие протоколы, например электронной почты (РОРЗ, SMTP, IMAP), общения в режиме реального времени (IRC) и групп новостей (NNTP).

Новые службы Интернета

В отдельную группу можно выделить службы Интернета, не имеющие сегодня такого широкого распространения, как те, о которых было рассказано ранее и не имеющие всеми признанных единых стандартов. В их основе также лежит использование Интернета как среды передачи информации. В частности, к этой группе можно отнести:

· программные средства для проведения видео- и аудио - конференций через Интернет;

· системы широковещательной передачи мультимедийной информации.

Службы поиска информации

Особую группу составляют службы Интернета, поддерживаемые одной из групп его участников и причисляемые в данной категории благодаря глобальному характеру предоставляемых ими услуг по поиску информации. Поиск информации является сегодня одной из ключевых проблем Интернета, так как количество представленных в нем web-страниц сегодня оценивается более чем в несколько сотен миллионов. Ниже перечислены основные инструменты поиска информации в Интернете:

· Поисковые машины (spiders, crawlers). Основная функция поисковых машин состоит в исследовании Интернета с целью сбора данных о существующих в нем web-сайтах и выдаче по запросу пользователя информации о web-страницах, наиболее полно удовлетворяющих введенному запросу.

· Каталоги. Представляют собой иерархически организованную тематическую структуру, в которую, в отличие от поисковых машин, информация заносится по инициативе пользователей. Добавляемая страница жестко привязывается к принятым в каталоге категориям.

· Мета-средства поиска. Мета-средства поиска позволяют усовершенствовать процесс путем запуска одновременно нескольких поисковых средств. Этот способ значительно повышает скорость, однако не позволяет воспользоваться возможностями построения сложных запросов, предлагаемыми большинством современных систем поиска.

3. Методы обеспечения безопасности в сети Интернет

Одним из важнейших условий широкого применения Интернета было и остается обеспечение адекватного уровня безопасности для всех транзакций, проводимых через него.

Понятие безопасность информации можно определить как состояние устойчивости информации к случайным или преднамеренным воздействиям. Поскольку Сеть полностью открыта для внешнего доступа, то роль этих методов очень велика. Большая значимость фактора безопасности также отмечается многочисленными исследованиями, проводимыми в Интернете.

Решить проблемы безопасности призвана криптография - наука об обеспечении безопасности данных. Криптография и построенные на ее основе системы призваны решать следующие задачи.

· Конфиденциальность. Информация должна быть защищена от несанкционированного доступа как при хранении, так и при передаче. Обеспечивается шифрованием.

· Аутентификация. Необходимо однозначно идентифицировать отправителя. Обеспечивается электронной цифровой подписью и сертификатом.

· Целостность. Информация должна быть защищена от несанкционированного изменения, как при хранении, так и при передаче. Обеспечивается электронной цифровой подписью.

В соответствии с названными задачами основными методами обеспечения безопасности выступают шифрование, цифровая подпись и сертификаты.

Шифрование

Технологии шифрования преобразуют простой текст в форму, которую невозможно прочитать, не обладая специальным шифровальным ключом.

Любая система шифрования работает по определенной методологии, включая в себя один или более алгоритмов шифрования (математических формул), ключи, используемые этими алгоритмами, а также систему управления ключами.

Безопасность систем такого типа зависит от конфиденциальности ключа, используемого в алгоритме шифрования, а не от конфиденциальности самого алгоритма, который может быть общедоступен и благодаря этому хорошо проверен.

Цифровая подпись

Шифрование передаваемых через Интернет данных позволяет защитить их от посторонних лиц. Однако для полной безопасности должна быть уверенность в том, что второй участник транзакции является тем лицом, за которое он себя выдает. В электронной коммерции применяется электронный эквивалент традиционной подписи - цифровая подпись. Как и в шифровании, технология электронной подписи использует либо секретный ключ (в этом случае оба участника сделки применяют один и тот же ключ), либо открытый ключ (при этом требуется пара ключей - открытый и личный).

Цифровая подпись позволяет проверить подлинность личности отправителя: она основана на использовании личного ключа автора сообщения и обеспечивает самый высокий уровень сохранности информации.

Сертификаты

Электронный сертификат представляет собой цифровой документ, который связывает открытый ключ с определенным пользователем или приложением. Для заверения электронного сертификата используется электронная цифровая подпись доверенного центра - ЦС (Центра Сертификации). Исходя из функций, которые выполняет ЦС, он является основным компонентом всей инфраструктуры открытых ключей (ИОК или PKI - Public Key Infrastructure). Используя открытый ключ ЦС, каждый пользователь может проверить достоверность электронного сертификата, выпущенного ЦС, и воспользоваться его содержимым.

4. Платежные Интернет-системы

Платежная система в Интернете - это система проведения расчетов между финансовыми, коммерческими организациями и пользователями в процессе покупки / продажи товаров и услуг через Интернет. Именно платежная система позволяет превратить службу по обработке заказов или электронную витрину в полноценный магазин со всеми стандартными атрибутами: выбрав товар или услугу на сайте продавца, покупатель может осуществить платеж, не отходя от компьютера.

Оплата в системе электронной коммерции может производиться в случае соблюдения ряда условий:

Соблюдение конфиденциальности. При проведении платежей через Интернет покупатель хочет, чтобы его данные были известны только организациям, имеющим на это законное право.

Сохранение целостности информации. Информация о покупке никем не может быть изменена.

Проведение процедуры аутентификации. Покупатели и продавцы должны быть уверены, что все стороны, участвующие в сделке, являются теми, за кого они себя выдают.

Наличие гарантии рисков продавца. Величина рисков, связанных с отказами от товара и недобросовестностью покупателя, должна быть согласована с поставщиком услуг платежной системы и другими организациями, включенными в торговые цепочки, посредством специальных соглашений.

Минимизация платы за транзакцию. Плата за обработку транзакций заказа и оплаты товаров входит в их стоимость, поэтому снижение цены транзакции увеличивает конкурентоспособность. Важно отметить, что транзакция должна быть оплачена в любом случае, даже при отказе покупателя от товара.

Все указанные условия должны быть реализованы в платежной системе Интернета.

Классификация платежных систем

Кредитные системы

К ним относятся системы управления банковскими счетами через Интернет, предлагаемые различными банками, а также системы с использованием кредитных карт.

Интернет-банкинг

Интернет-банкинг представляет собой вариант дистанционного способа оказания банковских услуг клиентам.

В первом случае банк поставляет клиенту свое специализированное программное обеспечение и подключает его к своей внутренней системе.

Во втором случае прикладное программно-математическое обеспечение представляет собой специальное интернет-приложение, функционирующее только в сеансе диалоговой связи клиента с банком. В этом случае клиент может получить доступ к своему банковскому счету, войдя в сервер банка в Интернете с любого компьютера, предварительно введя свой пароль и ПИН-код. Для повышения безопасности в подобных системах применяются различные способы защиты экономической информации от несанкционированного доступа.

Использование пластиковых карт

Важнейшая особенность всех пластиковых карточек состоит в том, что на них хранится определенный набор информации, используемый в различных прикладных программах. В сфере денежного обращения пластиковые карточки являются одним из прогрессивных средств организации безналичных расчетов. Пластиковая карта является средством управления счетом, переданным банком владельцу счета во временное пользование.

В карточках со штрихкодом в качестве идентифицирующего элемента используется штриховой код.

Карточки с магнитной полосой являются на сегодняшний день наиболее распространенными. Магнитная полоса располагается на обратной стороне карты и состоит из трех дорожек. Из них первые две предназначены для хранения идентификационных данных, а на третью можно записывать информацию (например, текущее значение лимита дебетовой карточки).

В смарт-картах или картах памяти носителем информации является микросхема. Карты памяти подразделяются на два типа: с полнодоступной и защищенной памятью. В картах первого типа нет никаких ограничений на чтение и запись данных. Карты с защищенной памятью имеют область идентификационных данных и одну или несколько прикладных областей.

Идентификационная область карт допускает лишь однократную запись при персонализации, и в дальнейшем доступна только на считывание. Доступ к прикладным областям регламентируется и осуществляется по предъявлению соответствующего ключа.

Частным случаем карт памяти являются карты-счетчики, в которых значение, хранимое в памяти, может изменяться лишь на фиксированную величину.

Карты с микропроцессором представляют собой, по сути, микрокомпьютеры и содержат все соответствующие основные аппаратные компоненты. При этом часть данных может быть доступна только внутренним программам карточки, что вместе со встроенными криптографическими средствами делает микропроцессорную карту высокозащищенным инструментом, который может быть использован в финансовых приложениях.

Кроме описанных выше типов пластиковых карточек, используемых в финансовых приложениях, существует еще ряд карточек, основанных на иных механизмах хранения данных. Такие карточки (оптические, индукционные и пр.) используются в медицинских системах, системах безопасности и др.

Дебетовые системы

Дебетовые схемы платежей в Интернете построены аналогично их традиционным прототипам: чековым и обычным денежным схемам. В схему вовлечены две независимые стороны: эмитент (субъект, управляющий платежной системой) и пользователи. Эмитент выпускает некие электронные единицы, представляющие собой платежные средства.

Пользователи систем выполняют две главные функции. Они производят и принимают платежи через Интернет, используя выпущенные электронные единицы.

При использовании электронных денежных обязательств между участниками сделки происходит передача информации, представляющей самостоятельную финансовую ценность. Эта информация может быть тут же проверена на подлинность и платежеспособность стороной, принимающей платеж или выпустившей эти обязательства, и тут же использована для следующего платежа или переведена в другие, не электронные платежные средства.

Электронные чеки

Электронные чеки являются аналогом обычных бумажных чеков. Основных отличий здесь два. Во-первых, в виртуальном варианте - подпись электронная. Во-вторых, сами чеки выдаются в электронном виде.

Проведение платежей состоит из нескольких этапов:

Плательщик выписывает электронный чек, подписывает электронной подписью и пересылает его получателю. В целях обеспечения большей надежности и безопасности номер чекового счета можно закодировать открытым ключом банка.

Чек предъявляется к оплате платежной системе. Далее происходит проверка электронной подписи.

В случае подтверждения подлинности электронной подписи поставляется товар или оказывается услуга. Со счета плательщика деньги перечисляются на счет получателя.

Российской системой, использующей схему функционирования электронных чеков, является CyberPlat.

Электронные деньги

Электронные деньги полностью моделируют реальные деньги. При этом эмиссионная организация выпускает их электронные аналоги. Далее, они покупаются пользователями, которые с их помощью оплачивают покупки, а затем продавец погашает их у эмитента. При эмиссии каждая денежная единица заверяется электронной подписью, которая проверяется выпускающей структурой перед погашением.

Главное отличие электронных денег от реальных состоит в том, что они предоставляют собой электронные денежные обязательства выпустившей их стороны, но настоящими деньгами с юридической точки зрения являться не могут. Применяющийся же термин «деньги» показывает, что электронные деньги в значительной степени наследуют свойства реальных наличных денег, главное из которых - анонимность.

Эмитировать электронные наличные могут как банки, так и небанковские организации. В России это - PayCash, WebMoney.

5. Проблемы и перспективы развития интернет-маркетинга

В настоящий момент реально работают несколько платежных инструментов и поддерживающие их технологические решения. Выбор адекватных платежных инструментов, являющийся ключевым вопросом для развития рынка платежей в Интернете, должен быть обусловлен целым рядом критериев, в число которых входят: удобство пользования, надежность и скорость проведения операции, безопасность и невысокая стоимость инструмента и его поддержки для всех участников платежей: покупателей, продавцов, банков. На одном полюсе спектра возможных инструментов - традиционные платежные карточки, на другом - цифровая наличность. Что касается цифровых денег, то их распространению препятствует ряд факторов. К ним относятся: анонимность платежей, опасность неконтролируемой эмиссии, а также сложность аудита торговых операций. Платежные же карты являются признанным платежным инструментом.

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РК

На тему: «Основные принципы построения и структура сети Интернет»

Выполнила: студент гр. МР 411

Кузнецова Е.А.

г. Талдыкорган

2014-2015 уч. год

1. Структура и основные принципы работы сети Интернет

Цель: ознакомиться со структурой и основными принципами работы всемирной сети Интернет, с базовыми протоколами Интернет и системой адресации.

2. А рхитектура и принципы работы сети Интернет

Глобальные сети, охватывая миллионы людей, полностью изменили процесс распространения и восприятия информации.

Глобальные сети (Wide Area Network, WAN) - это сети, предназначенные для объединения отдельных компьютеров и локальных сетей, расположенных на значительном удалении (сотни и тысячи километров) друг от друга. Глобальные сети объединяют пользователей, расположенных по всему миру, используя при этом самые разнообразные каналы связи.

Современный Интернет -- весьма сложная и высокотехнологичная система, позволяющая пользователю общаться с людьми, находящимися в любой точке земного шара, быстро и комфортно отыскивать любую необходимую информацию, публиковать для всеобщего сведения данные, которые он хотел бы сообщить всему миру.

В действительности Internet не просто сеть, -- это структура, объединяющая обычные сети.Internet -- это «сеть сетей».

Чтобы описать сегодняшний Internet, полезно воспользоваться строгим определением.

В своей книге « The Matrix : Computer Networks and Conferencing Systems Worldwide » Джон Квотерман описывает Internet как «метасеть, состоящую из многих сетей, которые работают согласно протоколам семейства TCP/IP, объединены через шлюзы и используют единое адресное пространство и пространство имен» .

В Internet нет единого пункта подписки или регистрации, вместо этого вы контактируете с поставщиком услуг, который предоставляет вам доступ к сети через местный компьютер. Последствия такой децентрализации с точки зрения доступности сетевых ресурсов также весьма значительны. Среду передачи данных в Internet нельзя рассматривать только как паутину проводов или оптоволоконных линий. Оцифрованные данные пересылаются через маршрутизаторы , которые соединяют сети и с помощью сложных алгоритмов выбирают наилучшие маршруты для информационных потоков (рис.1).

В отличие от локальных сетей, в составе которых имеются свои высокоскоростные каналы передачи информации, глобальная (а также региональная и, как правило, корпоративная ) сеть включает подсеть связи (иначе: территориальную сеть связи, систему передачи информации), к которой подключаются локальные сети, отдельные компоненты и терминалы (средства ввода и отображения информации) (рис. 2).

Подсеть связи состоит из каналов передачи информации и коммуникационных узлов, которые предназначены для передачи данных по сети, выбора оптимального маршрута передачи информации, коммутации пакетов и реализации ряда других функций с помощью компьютера (одного или нескольких) и соответствующего программного обеспечения, имеющихся в коммуникационном узле. Компьютеры, за которыми работают пользователи-клиенты, называются рабочими станциями , а компьютеры, являющиеся источниками ресурсов сети, предоставляемых пользователям, называютсясерверами . Такая структура сети получила название узловой .

Рис.1 Схема взаимодействия в сети Интернет

Интернет - это глобальная информационная система, которая:

· логически взаимосвязана пространством глобальных уникальных адресов, основанных на Интернет-протоколе (IP);

· способна поддерживать коммуникации с использованием семейства протокола управления передачей - TCP/IP или его последующих расширений/преемников и/или других IP-совместимых протоколов;

· обеспечивает, использует или делает доступными на общественной или частной основе высокоуровневые услуги, надстроенные над описанной здесь коммуникационной и иной связанной с ней инфраструктурой.

Инфраструктура Интернет (рис.2):

1. магистральный уровень (система связанных высокоскоростных телекоммуникационных серверов).

2. уровень сетей и точек доступа (крупные телекоммуникационные сети), подключенных к магистрали.

3. уровень региональных и других сетей.

4. ISP - интернет-провайдеры.

5. пользователи.

К техническим ресурсам сети Интернет относятся компьютерные узлы, маршрутизаторы, шлюзы, каналы связи и др.

Рис.2 Инфраструктура сети Интернет

В основу архитектуры сетей положен многоуровневый принцип передачи сообщений . Формирование сообщения осуществляется на самом верхнем уровне модели ISO/OSI.. Затем (при передаче) оно последовательно проходит все уровни системы до самого нижнего, где и передается по каналу связи адресату. По мере прохождения каждого из уровней системы сообщение трансформируется, разбивается на сравнительно короткие части, которые снабжаются дополнительными заголовками, обеспечивающими информацией аналогичные уровни на узле адресата. В этом узле сообщение проходит от нижнего уровня к верхнему, снимая с себя заголовки. В результате адресат принимает сообщение в первоначальном виде.

В территориальных сетях управление обменом данных осуществляется протоколами верхнего уровня модели ISO/OSI. Независимо от внутренней конструкции каждого конкретного протокола верхнего уровня для них характерно наличие общих функций: инициализация связи, передача и прием данных, завершение обмена. Каждый протокол имеет средства для идентификации любой рабочей станции сети по имени, сетевому адресу или по обоим этим атрибутам. Активизация обмена информацией между взаимодействующими узлами начинается после идентификации узла адресата узлом, инициирующим обмен данными. Инициирующая станция устанавливает один из методов организации обмена данными: метод дейтаграмм или метод сеансов связи. Протокол предоставляет средства для приема/передачи сообщений адресатом и источником. При этом обычно накладываются ограничения на длину сообщений.

3. T CP / IP -- технология межсетевого взаимодействия

Наиболее распространенным протоколом управления обменом данных является протокол TCP/IP. Главное отличие сети Internet от других сетей заключается именно в ее протоколах TCP/IP , охватывающих целое семейство протоколов взаимодействия между компьютерами сети. TCP/IP -- это технология межсетевого взаимодействия, технология Internet. Поэтому глобальная сеть, объединяющая множество сетей с технологиейTCP/IP , называется Internet .

Протокол TCP/IP -- это семейство программно реализованных протоколов старшего уровня, не работающих с аппаратными прерываниями. Технически протокол TCP/IP состоит из двух частей -- IP иTCP.

Протокол IP ( Internet Protocol -- межсетевой протокол) является главным протоколом семейства, он реализует распространение информации в IP-сети и выполняется на третьем (сетевом) уровне модели ISO/OSI. Протокол IP обеспечивает дейтаграммную доставку пакетов, его основная задача -- маршрутизация пакетов. Он не отвечает за надежность доставки информации, за ее целостность, за сохранение порядка потока пакетов. Сети, в которых используется протокол IP, называются IP-сетями. Они работают в основном по аналоговым каналам (т.е. для подключения компьютера к сети требуется IP-модем) и являются сетями с коммутацией пакетов. Пакет здесь называется дейтаграммой.

Высокоуровневый протокол TCP ( Transmission Control Protocol -- протокол управления передачей) работает на транспортном уровне и частично -- на сеансовом уровне. Это протокол с установлением логического соединения между отправителем и получателем. Он обеспечивает сеансовую связь между двумя узлами с гарантированной доставкой информации, осуществляет контроль целостности передаваемой информации, сохраняет порядок потока пакетов.

Для компьютеров протокол TCP/IP -- это то же, что правила разговора для людей. Он принят в качестве официального стандарта в сети Internet, т.е. сетевая технология TCP/IP де-факто стала технологией всемирной сети Интернет.

Ключевую часть протокола составляет схема маршрутизации пакетов, основанная на уникальных адресах сети Internet. Каждая рабочая станция, входящая в состав локальной или глобальной сети, имеет уникальный адрес, который включает две части, определяющие адрес сети и адрес станции внутри сети. Такая схема позволяет передавать сообщения как внутри данной сети, так и во внешние сети.

4. Адресация в сети интернет . Основные протоколы сети Интернет

Работа сети Internet основана на использовании семейств коммуникационных протоколов TCP/IP (Transmission Control Protocol / Internet Protocol ). TCP/IP используется для передачи данных как в глобальной сети Internet, так и во многих локальных сетях.

Название TCP/IP определяет семейство протоколов передачи данных сети. Протокол -- это набор правил, которых должны придерживаться все компании, чтобы обеспечить совместимость производимого аппаратного и программного обеспечения. Эти правила гарантируют совместимость производимого аппаратного и программного обеспечения. Кроме того, TCP/IP - это гарантия того, что ваш персональный компьютер сможет связаться по сети Internet с любым компьютером в мире, также работающим с TCP/IP. При соблюдении определенных стандартов для функционирования всей системы не имеет значения, кто является производителем программного обеспечения или аппаратных средств. Идеология открытых систем предполагает использование стандартных аппаратных средств и программного обеспечения.TCP/IP -- открытый протокол и вся специальная информация издана и может быть свободно использована.

Различный сервис, включаемый в TCP/IP, и функции этого семейства протоколов могут быть классифицированы по типу выполняемых задач. Упомянем лишь основные протоколы, так как общее их число насчитывает не один десяток: сеть интернет архитектура сервер

· транспортные протоколы -- управляют передачей данных между двумя машинами:

· TCP/IP (Transmission Control Protocol),

· UDP (User Datagram Protocol);

· протоколы маршрутизации -- обрабатывают адресацию данных, обеспечивают фактическую передачу данных и определяют наилучшие пути передвижения пакета:

· IP (Internet Protocol),

· ICMP (Internet Control Message Protocol),

· RIP (Routing Information Protocol)

· и другие;

· протоколы поддержки сетевого адреса -- обрабатывают адресацию данных, обеспечивают идентификацию машины с уникальным номером и именем:

· DNS (Domain Name System),

· ARP (Address Resolution Protocol)

· и другие;

· протоколы прикладных сервисов -- это программы, которые пользователь (или компьютер) использует для получения доступа к различным услугам:

· FTP (File Transfer Protocol),

· TELNET ,

· HTTP (HyperText Transfer Protocol)

· NNTP (NetNewsTransfer Protocol)

· и другие

Сюда включается передача файлов между компьютерами, удаленный терминальный доступ к системе, передача гипермедийной информации и т.д.;

· шлюзовые протоколы помогают передавать по сети сообщения о маршругазации и информацию о состоянии сети, а так же обрабатывать данные для локальных сетей:

· EGP (Exterior Gateway Protocol),

· GGP (Gateway-to-Gateway Protocol),

· IGP (Interior Gateway Protocol);

· другие протоколы - используются для передачи сообщений электронной почты, при работе с каталогами и файлами удаленного компьютера и так далее:

· SMTP (Simple Mail Transfer Protocol),

· NFS (Network File System).

5. IP- адресация

Теперь подробнее остановимся на понятии IP-адреса.

Каждый компьютер в Internet (включая любой ПК, когда он устанавливает сеансовое соединение с провайдером по телефонной линии) имеет уникальный адрес, называемый IP -адрес .

IP-адрес имеет длину 32 бита и состоит из четырех частей по 8 бит, именуемых в соответствии с сетевой терминологией октетами (octets ) . Это значит, что каждая часть IP-адреса может принимать значение в пределах от 0 до 255. Четыре части объединяют в запись, в которой каждое восьмибитовое значение отделяется точкой. Когда речь идет о сетевом адресе, то обычно имеется в виду IP-адрес.

Если бы использовались все 32 бита в IP-адресе, то получилось бы свыше четырех миллиардов возможных адресов -- более чем достаточно для будущего расширения Internet. Однако некоторые комбинации битов зарезервированы для специальных целей, что уменьшает число потенциальных адресов. Кроме того, 8-битные четверки сгруппированы специальными способами в зависимости от типа сети, так что фактическое число адресов еще меньше.

С понятием IP-адреса тесно связано понятие хоста (host ) . Некоторые просто отождествляют понятие хоста с понятием компьютера, подключенного к Internet. В принципе, это так, но в общем случаепод хостом понимается любое устройство, использующее протокол TCP/IP для общения с другим оборудованием. То есть кроме компьютеров, это могут быть специальные сетевые устройства -- маршрутизаторы (routers), концентраторы (habs) и другие. Эти устройства так же обладают своими уникальными IР-адресами,-- как и компьютеры узлов сети пользователей.

ЛюбойIP -адрес состоит из двух частей: адреса сети (идентификатора сети, Network ID) и адреса хоста (идентификатора хоста, Host ID) в этой сети . Благодаря такой структуре IP-адреса компьютеров в разных сетях могут иметь одинаковые номера. Но так как адреса сетей различны, то эти компьютеры идентифицируются однозначно и не могут быть перепутаны друг с другом.

IP-адреса выделяются в зависимости от размеров организации и типа ее деятельности. Если это небольшая организация, то, скорее всего в ее сети немного компьютеров (и, следовательно, IP-адресов). Напротив, у большой корпорации могут быть тысячи (а то и больше) компьютеров, объединенных во множество соединенных между собой локальных сетей. Для обеспечения максимальной гибкости IP -адреса разделяются на классы: А, В и С. Еще существуют классы D и Е , но они используются для специфических служебных целей.

Итак, три класса IP-адресов позволяют распределять их в зависимости от размера сети организации. Поскольку 32 бита -- допустимый полный размер IP-адреса, то классы разбивают четыре 8-битные части адреса на адрес сети и адрес хоста в зависимости от класса.

Адрес сети класса A определяется первым октетом IP-адреса (считается слева направо). Значение первого октета, находящееся в пределах 1-126, зарезервировано для гигантских транснациональных корпорации и крупнейших провайдеров. Таким образом, в классе А в мире может существовать всего лишь 126 крупных компаний, каждая из которых может содержать почти 17 миллионов компьютеров.

Класс B использует 2 первых октета в качестве адреса сети, значение первого октета может принимать значение в пределах 128--191. В каждой сети класса В может быть около 65 тысяч компьютеров, и такие сети имеют крупнейшие университеты и другие большие организации.

Соответственно, в классе C под адрес сети отводится уже три первых октета, а значение первого октета может быть в пределах 192-223. Это самые распространенные сети, их число может превышать более двух миллионов, а число компьютеров (хостов) в каждой сети -- до 254. Следует отметить, что «разрывы» в допустимых значениях первого октета между классами сетей появляются из-за того, что один или несколько битов зарезервированы в начале IP-адреса для идентификации класса.

Если любой IP-адрес символически обозначить как набор октетов w.x.y.z, то структуру для сетей различных классов можно представить в таблице 1.

Всякий раз, когда посылается сообщение какому-либо хост-компьютеру в Internet, IP-адрес используется для указания адреса отправителя и получателя. Конечно, пользователям не придется самим запоминать все IP-адреса, так как для этого существует специальный сервис TCP/IP, называемыйDomain Name System (Доменная система имен)

Таблица 1. Структура IP-адресов в сетях различных классов

6. Понятие маски подсети

Для того чтобы отделить идентификатор сети от идентификатора хоста, применяется специальное 32-битное число, называемое маской подсети (subnet mask). Чисто внешне маска подсети представляет собой точно такой же набор из четырех октетов, разделенных между собой точками, как и любой IP-адрес. В таблице 2 приведены значения маски подсети для сетей класса A, B, C, используемые по умолчанию.

Таблица 2. Значение маски подсети (по умолчанию)

Маска применяется также для логического разделения больших IP-сетей на ряд подсетей меньшего масштаба. Представим, к примеру, что в Сибирском Федеральном Университете, обладающего сетью класса B, имеется 10 факультетов и в каждом из них установлено по 200 компьютеров (хостов). Применив маску подсети 255.255.0.0, эту сеть можно разделить на 254 отдельных подсетей с числом хостов до 254 в каждой.

Значения маски подсети, применяемые по умолчанию, не являются единственно возможными. К примеру, системный администратор конкретной IP-сети может использовать и другое значение маски подсети для выделения лишь некоторых бит в октете идентификатора хоста.

7. Как зарегистрировать IP -сеть своей организации

На самом деле, конечные пользователи не имеют отношения к этой задаче, которая ложиться на плечи системного администратора данной организации. В свою очередь, в этом ему оказывают содействие провайдеры Internet, обычно беря на себя все регистрационные процедуры в соответствующей международной организации, называемой InterNIC (Network Information Center ). Например, Сибирский федеральный университет желает получить адрес электронной почты в Internet, содержащий строку sfu-kras.ru. Такой идентификатор, включающий название фирмы, позволяет отправителю электронной почты определить компанию адресата.

Чтобы получить один из этих уникальных идентификаторов, называемых доменным именем, компания или провайдер посылает запрос в орган, который контролирует подключение к Internet --InterNIC. Если InterNIC (или орган, уполномоченный им для такой регистрации в данной стране) утверждает имя компании, то оно добавляется в базу данных Internet. Доменные имена должны быть уникальны, чтобы предотвратить ошибки. Понятие домена и его роль в адресации сообщений, пересылаемых по Internet, будут рассмотрены ниже. Дополнительную информацию о работе InterNICможно узнать, посетив в Internet страницу http://rs.internic.ru .

8. Доменная система имен . Доменные имена

Кроме IP-адресов, для идентификации конкретных хостов в Сети используется так называемоедоменное имя хоста (Domain host name) . Так же, как и IP-адрес, это имя является уникальным для каждого компьютера (хоста) , подключенного к Internet, -- только здесь вместо цифровых значений адреса применяются слова.

В данном случае понятие домена означает совокупность хостов Internet, объединенных по какому-то признаку (например, по территориальному, когда речь идет о домене государства).

Разумеется, использование доменного имени хоста было введено только для того, чтобы облегчить пользователям задачу запоминания имен нужных им компьютеров. Сами компьютеры, по понятным причинам, в таком сервисе не нуждаются и вполне обходятся IP-адресами. Но вы только представьте, что вместо таких звучных имен как, www . microsoft . com или www . ibm . com вам пришлось бы запоминать наборы цифр, -- 207.46.19.190 или 129.42.60.216 соответственно.

Если говорить о правилах составления доменных имен, то здесь нет столь жестких ограничений по количеству составных частей имени и их значениям, как в случае IP-адресов. Например, если в ХТИ - Филиале СФУ существует хост с именем khti , входящий в домен республики Хакасия khakassia , а тот, в свою очередь входит в домен России ru , то доменное имя такого компьютера будет khti . khakassia . ru . В общем случае число составляющих доменного имени может быть различным и содержать от одной и более частей, например, rage . mp 3. apple . sda . org или www . ru .

Чаще всего доменное имя компании состоит из трех составляющих, первая часть -- имя хоста, вторая -- имя домена компании, и последняя -- имя домена страны или имя одного из семи специальных доменов, обозначающих принадлежность хоста, организации определенного профиля деятельности (см. табл. 1). Так, если ваша компания называется «KomLinc», то чаще всего Web-сервер компании будет назван www.komlinc.ru (если это российская компания), или, к примеру,www.komlinc.com, если вы попросили провайдера зарегистрировать вас в основном международном домене коммерческих организаций.

Последняя часть доменного имени называется идентификатором домена верхнего уровня (например, . ru или . com ). Существует семь доменов верхнего уровня, установленных InterNIC.

Таблица 1. Международные домены верхнего уровня

Имя домена

Принадлежность хостов домена

Пра-пра... бабушка Internet, сеть ARPANet (выходит из употребления)

Коммерческие организации (фирмы, компании, банки и так далее)

Правительственные учреждения и организации

Образовательные учреждения

Военные учреждения

«Сетевые» организации, управляющие Internet или входящие в его структуру

Организации, которые не относятся ни к одной из перечисленных категорий

Исторически сложилось так, что эти семь доменов верхнего уровня по умолчанию обозначают факт географического расположения (принадлежащего к ним) хоста на территории США. Поэтому международный комитет InterNIC наряду с вышеперечисленными доменами верхнего уровня допускает применение доменов (специальных сочетаний символов) для идентификации иных стран, в которой находится организация-владелец данного хоста.

Итак, домены верхнего уровня подразделяютсянаорганизационные (см. табл.1)итерриториальные. Имеются двухбуквенные обозначения для всех стран мира: . ru -- для России (пока в ходу и домен . su , объединяющий хосты на территории республик бывшего СССР), .са -- для Канады,. uk -- для Великобритании и т.д. Они обычно используются вместо одного из семи идентификаторов, перечисленных выше в таблице 1.

Территориальные домены верхнего уровня:

.ru (Russia)-- Россия;

Su (Soviet Union) -- страны бывшего СССР, ныне ряд государств СНГ;

Uk (United Kingdom) -- Великобритания;

Ua (Ukraine) -- Украина;

Bg (Bulgaria) -- Болгария;

Hu (Hungary) -- Венгрия;

De (Deutchland) -- Германия, и др.

C полным списком всех доменных имен государств можно познакомиться на различных серверах в Internet.

Не все компании за пределами США имеют идентификаторы страны. В какой-то мере использование идентификатора страны или одного из семи идентификаторов, принятых в США, зависит от того, когда проводилась регистрация доменного имени компании. Так, компаниям, которые достаточно давно подключились к Internet (когда число зарегистрированных организаций было сравнительно невелико), был дан трехбуквенный идентификатор. Некоторые корпорации, работающие за пределами США, но регистрирующие доменное имя через американскую компанию, сами выбирают, использовать ли им идентификатор страны пребывания. Сегодня в России можно получить доменный идентификатор . com , для чего следует оговорить этот вопрос со своим провайдером Internet.

9. Как работают серверы DNS

Теперь поговорим о том, каким образом доменные имена преобразуются в понятные для компьютера IP-адреса.

Занимается этим Domain Name System (DNS , Доменная система имен) сервис, обеспечиваемый TCP/IP, который помогает в адресации сообщений. Именно благодаря работе DNS вы можете не запоминать IP-адрес, а использовать намного более простой доменный адрес. Система DNSтранслирует символическое доменное имя компьютера в IP-адрес, находя запись в распределенной базе данных (хранящейся на тысячах компьютерах), соответствующую этому доменному имени. Стоит также отметить, что серверы DNS в русскоязычной компьютерной литературе часто называют«серверами имен».

10. Серверы имен корневой зоны

Хотя в мире насчитываются тысячи серверов имен, во главе всей системы DNS стоят девять серверов, названных серверами корневой зоны ( root zone servers ) . Серверы корневой зоны получили имена a . root _ server . net , b . root _ server . net и так далее вплоть до i . root _ server . net . Первый из них -- a . root _ server . net -- выступает в роли первичного сервера имен Internet, управляемого из информационного центра InterNIC, который регистрирует все домены, входящие в несколько доменов высшего уровня. Остальные серверы имен по отношению к нему вторичны, однако все хранят копии одних и тех же файлов. Благодаря этому любой из серверов корневой зоны может заменять и подстраховывать остальные.

На этих компьютерах размещена информация о хост-компьютерах серверов имен, обслуживающих семь доменов высшего уровня: .com, .edu, .mil, .gov, .net, .org и специального.arpa(рис.1). Любой из этих девяти серверов несет так же файл высшего уровня, как.uk (Великобритания), .de (Германия), .jp (Япония) и так далее.

Рис. 1. Иерархическая структура имен доменов Internet

В файлах корневой зоны содержатся все имена хост-компьютеров и IP-адреса серверов имен для каждого поддомена, входящего в домен высшего уровня. Другими словами, каждый корневой сервер располагает информацией обо всех доменах высшего уровня, а так же знает имя хост-компьютера и IP-адрес, по меньшей мере, одного сервера имен, обслуживающего каждый из вторичных доменов, входящих в любой домен высшего уровня. Для доменов иностранных государств в базе данных хранятся сведения по серверам имен для каждой страны. Например, в неком домене company . com файлы корневой зоны для домена содержат данные о сервере имен для любого адреса, заканчивающегося наcompany . com .

Кроме серверов имен корневой зоны существуют локальные серверы имен , установленные в доменах более низкого уровня. Локальный сервер имен кэширует список хост-компьютеров, поиск которых он производил в последнее время. Это устраняет необходимость постоянно обращаться в систему DNS с запросами о часто используемых хост-компьютерах. Кроме того, локальные серверы имен являются итерционными , а серверы корневой зоны -- рекурсивными . Это значит, что локальный сервер имен будет повторять процедуру запроса информации о других серверах имен до тех пор, пока не получит ответа.

Корневые же серверы Internet, находящиеся на вершине структуры DNS, напротив, лишь выдают указатели на домены следующего уровня. Добраться до конца цепочки и получить требуемый IP-адрес -- задача локального сервера имен. Чтобы решить ее, он должен спуститься по иерархической структуре, последовательно запрашивая у локальных серверов имен указатели на ее низшие уровни.

Размещено на Allbest.ru

...

Подобные документы

    Понятие World Wide Web, её структура и принципы, развитие в функционировании сети Интернет. Архитектура и основные компоненты Всемирной паутины, применение гипертекстовых технологий. Перспективы развития глобальной мировой системы передачи информации.

    курсовая работа , добавлен 04.12.2014

    Использование IP-адреса в протоколе TCP/IP, его роль в организации подключения к сети Интернет. Понятие маски подсети. Данные, необходимые для настройки протокола TCP/IP. Механизм тестирования его конфигурации и соединения с сетями с помощью утилит.

    презентация , добавлен 02.11.2014

    История создания сети Интернет. "Жертвы" интернета, что именно завлекает людей в Сеть и как этого можно избежать. Проблема "Интернет на рабочем месте". Особенности общения в Интернет на web-chat. Психологические аспекты общения, понятия флейм и флуд.

    аттестационная работа , добавлен 05.10.2009

    Роль и общие принципы построения компьютерных сетей. Топологии: шинная, ячеистая, комбинированная. Основные системы построения сетей "Token Ring" на персональных компьютерах. Протоколы передачи информации. Программное обеспечение, технология монтажа сети.

    курсовая работа , добавлен 11.10.2013

    Возможности и архитектура сети Интернет/Интранет, функциональная схема интерактивного взаимодействия пользователей в ней, формы реализации. Технология Интранет в управлении бизнесом на российских предприятиях. Корпоративные интранет-порталы, их внедрение.

    реферат , добавлен 08.09.2010

    История и основные этапы создания всемирной информационной системы Интернет, ее характеристики и назначение, сферы применения и распространенность. Характер общения и разновидности развлечений в Интернет, преимущества и недостатки, порождаемые проблемы.

    аттестационная работа , добавлен 19.10.2009

    Предоставление качественного и высокоскоростного доступа к сети Интернет абонентам ОАО "Укртелеком". Типы автоматизированных систем и их основные характеристики. Выбор платформы и инструментов проектирования. Алгоритм работы клиентской части узла.

    дипломная работа , добавлен 28.09.2010

    Широкополосный доступ в Интернет. Технологии мультисервисных сетей. Общие принципы построения домовой сети Ethernet. Моделирование сети в пакете Cisco Packet Tracer. Идентификация пользователя по mac-адресу на уровне доступа, безопасность коммутаторов.

    дипломная работа , добавлен 26.02.2013

    Структура компании, направления работы. Интернет, голосовая связь, цифровые каналы, корпоративные сети, IP-телевидение. Оборудование и программное обеспечение компании. Настройка PPPoE-соединения для операционной системы Windows в сети "Связь ТелеКом".

    отчет по практике , добавлен 07.08.2013

    Роль компьютерных сетей, принципы построения. Протоколы передачи информации в сети ArcNet, используемые топологии и средства связи. Программное обеспечение, технология развёртки. Операционные системы компьютерных сетей. Инструкция по технике безопасности.