Домашнему мастеру периодически необходимо провести измерения параметров цепей. Проверить какое напряжение на данный момент в сети, не перетерся ли кабель и т.д. Для этих целей есть небольшие приборы — мультиметры. При небольших размерах и стоимости они позволяют измерить различные электрические параметры. О том как пользоваться мультиметром и поговорим дальше.

Внешнее строение и функции

В последнее время специалисты и радиолюбители в основном пользуются электронными моделями мультиметров. Это не значит, что стрелочные совсем не используются. Они незаменимы когда из-за сильных помех электронные просто не работают. Но в большинстве случаев дело имеем именно с цифровыми моделями.

Есть разные модификации этих измерительных приборов с разной точностью измерений, разным функционалом. Есть автоматические мультиметры, в которых переключатель имеет всего несколько положений — им выбирают характер измерения (напряжение, сопротивление, сила тока) а пределы измерения прибор выбирает сам. Есть модели, которые могут быть связаны с компьютером. Данные измерений они передают сразу на компьютер, где их можно сохранить.

Но большинство домашних мастеров пользуются недорогими моделями среднего класса точности (с разрядностью 3,5, которая обеспечивает точность показаний в 1%). Это распространенные мультиметры dt 830, 831, 832, 833. 834 и т.д. Последняя цифра показывает «свежесть» модификации. Более поздние модели имеют более широкий функционал, но для домашнего применения эти новые возможности некритичны. Работа со всеми этими моделями мало чем отличается, так что будем говорить в общем о приемах и порядке действий.

Строение электронного мультиметра

Перед тем как пользоваться мультиметром, изучим его строение. Электронные модели имеют небольшой жидкокристаллический экран, на котором отображаются результаты измерений. Ниже экрана имеется переключатель диапазонов. Он вращается вокруг своей оси. Той частью, на которой нанесена красная точка или стрелка, он указывает на текущий тип и диапазон измерений. Вокруг переключателя нанесены метки, по которым выставляется тип измерений и их диапазон.

Ниже на корпусе имеются гнезда для подключения щупов. В зависимости от модели гнезд бывает два или три, щупов всегда два. Один положительный (красного цвета), второй отрицательный — черного. Черный щуп всегда подключается к разъему, подписанному «COM» или COMMON или который имеет обозначение как «земля». Красный — в одно из свободных гнезд. Если разъемов всегда два, проблем не возникает, если гнезд три, надо в инструкции прочесть, при каких измерениях в какое гнездо вставлять «плюсовой» щуп. В большинстве случаев красный щуп подключают в среднее гнездо. Так проводится большая часть измерений. Верхний разъем необходим, если измерять собрались ток до 10 А (если больше, то тоже в среднее гнездо).

Есть модели тестеров, в которых гнезда расположены не справа, а внизу (например, мультиметр Ресанта DT 181 или Hama 00081700 EM393 на фото). Разницы при подключении в этом случае нет: черный на гнездо с надписью «COM», а красный по ситуации — при измерении токов до от 200 мА до 10 А — в крайнее правое гнездо, во всех других ситуациях — в среднее.

Есть модели с четырьмя разъемами. В этом случае два гнезда для измерения тока — одно для микротоков (менее 200 мА), второе для силы тока от 200 мА до 10 А. Уяснив что и для чего имеется в приборе, можно начинать разбираться как пользоваться мультиметром.

Положение переключателя

Режим измерений зависит от того, в каком положении находится переключатель. На одном из его концов есть точка, она обычно подкрашена белым или красным цветом. Вот этот конец и указывает на текущий режим работы. В некоторых моделях переключатель сделан в виде усеченного конуса или имеет один край заостренный. Этот острый край тоже является указателем. Чтобы работать было проще, можно на этот указывающий край нанести яркую краску. Это может быть лак для ногтей или какая-то стойкая к истиранию краска.

Поворотом этого переключателя вы изменяете режим работы прибора. Если он стоит вертикально вверх, прибор выключен. Кроме этого есть следующие положения:

  • V с волнистой чертой или ACV (справа от положения «выключено»)- режим измерения переменного напряжения;
  • A с прямой чертой — измерение постоянного тока;
  • A с волнистой чертой — определение переменного тока (этот режим есть не на всех мультиметрах, на представленных выше фото его нет);
  • V с прямой чертой или надпись DCV (слева от положения выключено) — для измерения постоянного напряжения;
  • Ω — измерение сопротивлений.

Также есть положения для определения коэффициента усиления транзисторов и определения полярности диодов. Могут быть и другие, но их назначение надо искать в инструкции к конкретному прибору.

Измерения

Пользование электронным тестером удобно тем, что не надо искать нужную шкалу, считать деления, определяя показания. Они высветятся на экране с точностью до двух знаков после запятой. Если измеряемая величина имеет полярность, то отобразится и знак «минус». Если минуса нет, значение измерения положительное.

Как измерить сопротивление мультиметром

Для измерения сопротивления переводим переключатель в зону обозначенную буквой Ω. Выбираем любой из диапазонов. Один щуп прикладываем к одному входу, второй — к другому. Те цифры, которые высветятся на дисплее и есть сопротивление измеряемого вами элемента.

Иногда на экране отображаются не цифры. Если «выскочил» 0, значит надо изменить диапазон измерений на меньший. Если высветились слова «ol» или «over», стоит «1», диапазон слишком мал и его надо увеличить. Вот и все хитрости измерения сопротивления мультиметром.

Как измерить силу тока

Чтобы выбрать режим измерения необходимо сначала определиться ток постоянный или переменный. С измерением параметров переменного тока могут быть проблемы — этот режим есть далеко не на всех моделях. Но порядок действий вне зависимости от типа тока одинаков — меняется только положение переключателя.

Постоянный ток

Итак, определившись с типом тока, выставляем переключатель. Далее надо решить, в какое гнездо подключать красный щуп. Если даже приблизительно не знаете какие значения стоит ожидать, чтобы случайно не спалить прибор, лучше сначала установить щуп в верхнее (крайнее левое в других моделях) гнездо, которое подписано «10 А». Если показания будут небольшими — менее 200 мА, переставите щуп в среднее положение.

Точно также дело обстоит и с выбором диапазона измерений: сначала выставляете самый максимальный диапазон, если он оказывается слишком большим, переключаете на следующий меньший. Так до тех пор, пока не увидите показания.

Для измерения силы тока прибор должен включаться в разрыв цепи. Схема подключения дана на рисунке. В данном случае важно красный щуп устанавливать на «+» источника питания и черным касаться следующего элемента цепи. Не забывайте при измерении, что питание в есть, работайте аккуратно. Не касайтесь руками неизолированных концов щупа или элементов цепи.

Переменный ток

Испробовать режим измерения переменного тока можно на любой нагрузке, подключенной к бытовой электросети и определить таким образом потребляемый ток. Так как и в данном режиме прибор необходимо включать в разрыв цепи, с этим могут возникнуть сложности. Можно, как на фото ниже сделать специальный шнур для измерений. На одном конце шнура вилка, на другом — розетка, один из проводов разрезать, на концы прикрепить два разъема WAGO. Они хороши тем, что позволяют также зажать щупы. После того, как измерительная схема собрана, приступаем к измерениям.

Переводите переключатель в положение «переменный ток», выбирайте предел измерения. Учтите, что превышение пределов может вывести прибор из строя. В лучшем случае сгорит плавкий предохранитель, в худшем — повредится «начинка». Потому действуем по предложенной выше схеме: сначала ставим максимальный предел, потом постепенно уменьшаем. (не забываем про перестановку щупов в гнездах).

Теперь все готово. Сначала к розетке подключаем нагрузку. Можно настольную лампу. Вилку вставляем в сеть. На экране появляются цифры. Это и будет потребляемый лампой ток. Таким же образом можно измерить потребляемый ток для любого устройства.

Измерение напряжения

Напряжение также бывает переменным или постоянным, соответственно, выбираем требуемое положение. Подход к выбору диапазона тут такой же: если не знаете чего надо ожидать, ставите максимальный, постепенно переключая на меньшую шкалу. Не забывайте проверять правильно ли подключены щупы, в те ли гнезда.

В данном случае измерительный прибор подключается параллельно. Для примера можно измерить напряжение аккумулятора или обычной батарейки. Выставляем переключатель в положение режим измерения постоянного напряжения, так как ожидаемое значение знаем, выбираем подходящую шкалу. Далее щупами касаемся батарейки с двух сторон. Цифры на экране и будут тем напряжением, которое выдает этот элемент питания.

Как пользоваться мультиметром для измерения переменного напряжения? Да точно также. Только правильно выбрать предел измерений.

Прозвонка проводов с помощью мультиметра

Эта операция позволяет проверить целостность проводов. На шкале находим знак прозвонки — схематическое изображение звука (смотрите на фото, но там режим двойной, а может быть только знак прозвонки). Такое изображение выбрано потому, что если провод целый, прибор издает звук.

Ставим переключатель в нужное положение, щупы подключены как обычно — в нижнее и среднее гнездо. Прикасаемся одним щупом к одному краю проводника, другим — к другому. Если слышим звук, провод целый. В общем, как видите, пользоваться мультиметром несложно. Все легко запомнить.

Стандартный и наиболее часто встречающийся случай – это когда отсутствует напряжение в какой-либо розетке или осветительном приборе, а иногда и во всех сразу. В таком варианте выбора нет – необходима прозвонка кабеля, питающего всю систему, а затем и отдельных проводов.

Как правило, в распределительных коробках многоквартирных домов находится клубок никак и ничем необозначенных и кое-как заизолированных концов. Выключатели и розетки, особенно в старых домах, давно уже выслужили все сроки эксплуатации. Разобраться в этом хитросплетении и определить конкретное место, где произошел обрыв цепи непросто. Приходится проверять все элементы, заново маркировать жилы кабелей.

Нередко работа осложняется тем, что ее приходится проводить без отключения электрооборудования, но для этих ситуаций существуют различные устройства и приборы, выпускаемые промышленностью, позволяющие найти обрывы даже внутри стен. Но в условиях отдельно взятой квартиры или дома прозвонка проводов может быть произведена более простыми способами:

  • с полным отключением электроэнергии с использованием мультиметра;
  • либо без отключения – обыкновенной лампочкой.

Прозвонка проводов из лампочки и батарейки

Для того чтобы собрать устройство для прозвонки проводов и кабелей не обязательно иметь какие либо познания в электронике или радиотехнике. Не нужно разбираться в диодах, резисторах или конденсаторах. Сегодня я покажу, как сделать прозвонку для проводов из обычной батарейки и лампочки.

Итак, потребность в таком приборе у меня возникла при расключении распределительных коробок. То есть нужно было определить откуда и куда какой провод идет.

Конечно, когда в схеме два три провода то определить направление линий в коробке не составит труда, но согласитесь если проводка выполнена десятками направлений выполнить такую работу крайне не просто.

Однажды меня попросили собрать распредкоробки. То есть ситуация была такой, когда люди наняли электриков для выполнения монтажа электропроводки. Эти электрики часть работы сделали, взяли за нее деньги и куда-то пропали.

Большую часть работы они конечно сделали, а именно проложили провода, завели все концы в подрозетники и распредкоробки, ну и так по мелочи, установили точечные светильники . На этом вся их работа закончилась.

Оставалось только установить розетки, выключатели соединить провода в распределительных коробках, для чего меня и вызвали. Заказчик бился в панике и попросил меня закончить все дела с электрикой как можно скорее, чтобы все наконец то заработало.

В распределительные коробки заходило по 8-10 проводов в разных направлениях и определить какой куда идет не так и просто особенно если ты не выполнял разводку проводов. Вот здесь и стала, необходимость в таком устройстве как прозвонка проводов .

Это прибор, который состоит из лампочки, батарейки, щупов и соединительных проводов между ними.

Лампочка на напряжение 6 Вольт. Изначально батарейка была установлена крона на 9 Вольт, но со временем она подсела и я в ее корпус установил четыре обычных пальчиковых батарейки на 1.5 Вольт каждая и соединил их последовательно. То есть в сумме они также дают 6 Вольт.

Соединительные провода между ними самые обычные, тонкие, гибкие. Здесь очень важно чтобы их длина была достаточной для прозвонки проводов на длинных дистанциях.

Для удобства измерений на один конец щупа установил зажим типа «крокодильчик».

Это удобно в том плане когда, например коробки находится в разных комнатах и для того чтобы прозвонить кабель крепим «крокодил» в одной коробке, идем в другую и проверяем. То есть можно справиться самому с таким работами.

Прозвонка многожильного кабеля мультиметром

Мультиметр – это несложный прибор, который должен выполнять как минимум такие измерения: величин постоянного и переменного электрического напряжения и тока и значение электрического сопротивления.

Для прозвонки проводов и кабелей используется функция проверки сопротивления. Если точнее, то в этом процессе интересует не величина сопротивления, а его наличие или отсутствие, показывающее состояние проверяемой цепи.

Перед проведением работ прибор переключается в режим измерения сопротивления в самом низком диапазоне значений. Большинство моделей мультиметров при наличии цепи могут выдавать звуковой сигнал, что значительно повышает удобство работы с прибором.

Прозвонка жил кабеля или проводов производится следующим образом:

  1. если концы проводов находятся на незначительном расстоянии друг от друга, то достаточно к ним подсоединить щупы прибора и произвести измерение;
  2. при значительной протяженности исследуемого участка необходимо на одном конце кабеля накоротко замкнуть (соединить между собой) все жилы, а прозвонку проводов производить с другого конца последовательным подсоединением прибора к каждой паре проводников.

Если прибор вообще не выдает никаких показаний, то варианта два: либо кабель или провод «перебит» полностью, либо ошибочно производится измерение сопротивления не той цепи.

Не путать с тем когда на дисплее отображается ноль и когда на дисплее вообще нет ни каких цифр. Когда отображается ноль значит цепь замкнута но сопротивление цепи настолько малое что показания близки к нулю (например при прозвонке коротких проводов ). А когда на дисплее вообще ни чего не отображается, тогда нет замкнутой цепи (либо несоответствие жил провода, либо обрыв в самом проводе.)

Ситуации, когда электроэнергия перестает поступать к приборам, возникают довольно часто и не понаслышке знакомы любому электрику. Причин для этого может быть масса, но в большинстве случаев виноват так называемый обрыв на линии. Определить такую неисправность можно только с помощью прозвонки провода. В этой статье вместе сайтом сайт мы ответим на вопрос, как прозвонить провода и определить, какой из многих претерпел повреждения? Кроме того, мы расскажем о том, как профессиональные электрики определяют место повреждения скрытой электрической проводки.

Прибор для прозвонки проводов фото

Как прозвонить провода: способы и используемые приборы

Прозвонка проводов в домашних условиях может осуществляться двумя способами: с применением мультиметра и с использованием таких подручных средств, как обыкновенная лампочка с патроном. Последний вариант несколько неудобный, а вот первый вполне простой и доступный для самостоятельного осуществления. Мы рассмотрим оба варианта, поскольку иногда случается так, что под рукой нет приборчика, а результат нужен незамедлительно.

Начнем с первого способа, который предусматривает использование мультиметра. Чтобы было понятнее, разберем простой пример и выполним с помощью прибора для прозвонки провода проверку целостности провода для подключения системного блока компьютера к . Как правило, он содержит три жилы – с ними мы и будем работать.

Как прозванивать провода фото

Достаем мультиметр, включаем его в режим измерения сопротивления (омметр), замыкаем контактные щупы и устанавливаем стрелку индикатора на ноль. Теперь приступаем к тестированию кабеля. Один щуп приставляем к одному из контактов вилки, а второй поочередно втыкаем в отверстия разъема для подсоединения кабеля к системнику. Наблюдаем за показателями прибора, а вернее за его стрелкой – если омметр показывает сопротивление провода в пределах 2-3 Ома, то жила вполне исправна, если же оно превышает 10 Ом, это явный признак того, что именно на этой жиле имеется порыв. Может случиться так, что стрелка мультиметра вообще никак не прореагирует на ваши действия – это означает лишь то, что контакт на вилке и на разъеме не принадлежат одной и той же жиле .

Как прозванивать провода тестером

Таким вот способом выполняется прозвонка проводов мультиметром. Хочу отметить, что такой способ тестирования подходит для проводов любого назначения – телефонные, компьютерные, электрические.

Не рекомендуется использовать для определения целостности провода так называемую «пищалку», которой оснащены практически все современные мультиметры. Она срабатывает в диапазоне от нуля до нескольких сотен Ом, и определить с ее помощью неисправный провод не получится.

Практически точно таким же способом можно осуществить прозвонку с помощью тестера, снабженного индикатором напряжения. Следует понимать, что по разорванному проводу напряжение не подается, и для того, чтобы прозвонить провода тестером, достаточно измерить напряжение на его жилах. На индикаторе оно должно отображаться одинаковыми цифровыми значениями, которые имеют различный знак («+» или «-»). Единственный недостаток этого способа прозвонки заключается в том, что тестер в состоянии определить параметры провода только в случае, когда он находится под напряжением.

Прозвонка проводов фото

Другой способ прозвонки подходит для тестирования исключительно кабелей электрической проводки – он предусматривает использование куска обыкновенного провода с лампочкой. Если речь идет о прозвонке цепи освещения, то можно обойтись и длинным куском одножильного провода. Суть этого способа заключается в следующем. В распределительной коробке провода, ведущие к тому или иному потребителю электрической энергии, поочередно отбрасываются от общей цепи питания и вместо них непосредственно к потребителю подключается отдельный провод, работоспособность которого не вызывает сомнения. Если все заработало, то именно можно считать неисправным. Если нет, то восстанавливаем его на место и повторяем операцию с другим проводом электрической цепи.

В принципе, меняя исходную точку подключения дополнительного провода и используя в качестве индикатора лампу, можно прозвонить практически любой участок квартирной проводки. Метод отличный, а главное действенный – единственный его недостаток заключается в некоторых неудобствах, связанных с постоянными переключениями проводов.

Как прозванивать провода мультиметром фото

Методы обнаружения порывов в электрической проводке

С вопросом, как прозвонить провода мультиметром, мы разобрались, остается решить вопрос, как определить место порыва? Если этот вопрос касается не скрытой проводки, а шнуров подключения, то здесь вариантов мало – наверняка провод переломился возле вилки или штекера. А вот что делать, если речь идет о порыве скрытого в стене кабеля? Как тогда быть?

Для этих целей современная промышленность разработал массу приборов типа «Е-121» – в среде профессиональных электриков такое устройство называется «дятлом». С его помощью можно не только определить местоположение электрического провода, но и найти при необходимости место его порыва. Работать с ним достаточно просто – ведете его вдоль проложенного в стене кабеля и наблюдаете за специальным сигнализатором. В месте порыва образуются особые электромагнитные аномалии, на которые и реагирует прибор, подавая звуковой сигнал.

Прозвонка проводов мультиметром фото

Существуют и так называемые дедовские способы обнаружения скрытой и неисправной электрической проводки, проверенные годами и не одним поколением радиолюбителей. Для этого понадобится обыкновенный радиоприемник, настроенный на частоту волны в 100кГц. Продвигая его вдоль электрической проводки, нужно слушать посторонние шумы – там, где кроме возрастающего шипения, будет прослушиваться интенсивное потрескивание, находится место порыва провода.

Теперь вы знаете, как прозванивать провода, и сможете без помощи специалиста легко определить причину отсутствия электроэнергии в том или ином месте проводки, а при необходимости и обнаружить место ее порыва.

Страница 13 из 27

§ 4. ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
При использовании технологического перехода «проверка электрических цепей» могут быть обнаружены дефекты, приводящие к образованию непредусмотренных схемой цепей или нарушению существующих (отсутствие контакта, короткое замыкание, обрыв, ошибочные соединения и т. д.). Однако нельзя утверждать об отсутствии дефектов в трехфазных цепях и цепях с обмотками даже при целостности элементов и правильности их соединения.

Способы проверки электрических цепей

Электрические цепи проверяют двумя способами: непосредственным и заземления.
Непосредственный способ отличается отсутствием вспомогательных цепей и применяется, когда начало и конец проверяемой цепи находятся рядом.
Способ заземления (рис. 22), применяемый для проверки электрических цепей, начало и конец которых находятся в разных помещениях или достаточно далеко друг от друга, характеризуется использованием вспомогательных цепей - заземляющих проводников, жил любого кабеля, специально проложенных проводников, шин заземления и др. Для координации действий при проверке цепей предварительно устанавливают телефонную связь с помощью переговорных устройств В1 и В2, подключаемых через жилы проверяемого кабеля и общий проводник либо через специально проложенные проводники.

Рис. 23. Проверка электрических цепей непосредственным способом
При этом способе можно использовать два пробника, первый из которых включают на одном конце кабеля EI вместо временной перемычки Е2 (поз. III), а вторым отыскивают заземленную цепь на другом конце. Пробники следует подключать к вспомогательной цепи разнополярными щупами (поз. II и III), чтобы при их замыкании через проверяемую цепь проходил ток и индикаторы изменили свое состояние.


Риc. 22. Проверка электрических цепей способом заземления
Рассмотренные способы применяют для проверки обесточенных электрических цепей. Однако в ряде случаев электрические цепи можно проверить под напряжением, используя контрольную лампу, индикатор или вольтметр.
Пример 25. Непосредственный способ проверки электрических цепей. Пусть требуемся проверить целость и правильность электрических цепей в жгуте или кабеле, начало и конец которого распаяны на штепсельные соединители (рис. 23). Правильность соединений проверяют по нанесенной на соединитель маркировке.
Для проверки целости электрических цепей один щуп пробника Р подключают на одной стороне жгута к зажиму Г штепсельного соединителя, а на другой вторым щупом отыскивают зажим соединителя, имеющий электрическую связь с зажимом Г. Для выявления неправильных соединений с зажимом Г необходимо вторым щупом проверить все остальные зажимы соединителя, а также его корпус и экран жгута (поз. II-У), даже если искомая электрическая цепь была найдена с первой попытки (поз. 1). После отыскания первой цепи 1-Г так же находят вторую, третью и т. д.
Пример 26. Проверка электрической цепи способом заземления. Пусть необходимо проверить правильность маркировки жил кабеля Е1 (см. рис. 22). Проверку начинают с установки на одном конце кабеля временной перемычки Е2 между любой жилой и вспомогательной цепью. Затем, прикасаясь щупом пробника Р (поз. I) к заземленной жиле, проверяют целость вспомогательной цепи. Кроме того, следует проверить целость и правильность установки перемычки Е2, разрывая ее цепь кнопкой S и следя за изменением показаний пробника Р.
Далее приступают к поиску заземленной жилы на другом конце кабеля щупом пробника Р (поз. II). Найдя эту жилу, следует разомкнуть и замкнуть кнопку S или отключить и вновь подключить заземляющую перемычку Е2. Это делают, чтобы убедиться в правильности показаний пробника и отсутствии дополнительных, помимо перемычки Е2, соединений найденной жилы с землей и другими жилами кабеля. В ином случае может оказаться, что показания пробника вызваны заземлением одной жилы из жил, не зависящим от присоединения заземляющей перемычки Е2. После проверки первой цепи устанавливают перемычку Е2 на вторую цепь и повторяют описанные действия.
Пример 27. Поиск дефекта с помощью технологического перехода «проверка электрических цепей». При проверке цепей штепсельных соединителей XI, Х2 и ХЗ (рис. 24,а), соединенных между собой кабелями, обнаружен дефект, заключающийся в том, что при подключении пробника Р (поз. / и II) к двум гнездам соединителя ХЗ его показания одикаковы, т. е. гнезда соединены между собой, чего по схеме не должно быть. Попробуем найти этот дефект, используя эвристический метод.


Рис. 24. Поиск дефекта в электрической цепи с соединителем:
а - схема, б, в - проверка соединителя пробником

Ограничим область поиска дефекта, для чего выясним, не связано ли его появление с вмешательством в объект контроля, вызванным подключением заземляющей перемычки ЕЗ. Для этого необходимо разорвать цепь заземляющей перемычки выключателем 5 и проверить, существует ли в этом случае цепь, соединяющая гнезда 5 п 6 соединителя ХЗ между собой. Проверку выполняют пробником Р, включая его, как показано на рис. 24, б.
Показания пробника при отключенной заземляющей перемычке ЕЗ говорят о наличии цепи между гнездами 5 и 6. Таким образом, дефект не вызван вмешательством в объект контроля и искать его надо в самом объекте.
В общем случае объект контроля может представлять собой совокупность достаточно большого числа различных элементов. С чего начинать поиск? Воспользуемся и здесь принципом ограничения области поиска дефекта. Проверяемый объект контроля состоит из ответной части соединителя XI, кабеля Е1, соединителя Х2, кабеля Е2 и ответной части соединителя ХЗ, т. е. из пяти элементов. С помощью разборных соединений его можно расстыковкой соединителя разделить только на два блока. В первый блок войдут ответные части соединителей XI и Х2, а также кабель Е1, а во второй - остальные элементы. Разделив таким образом объект контроля на два блока, одновременно разделяем на две части область существования дефекта. Проверим каждый блок.
Так как дефект проявился в образовании цепи между гнездами 5 и 6, включим пробник Р, как показано на рис. 24, в. При этом стрелка пробника не отклоняется, следовательно, гнезда 5 и 6 не сообщаются между собой и дефекта в блоке нет. Раз этот блок исправен, перейдем к проверке другого. Подключим пробник, как показано на рис. 24, б, и проверим, не сообщаются ли между собой гнезда 5 и 6 соединителя ХЗ при отключенной ответной части соединителя Х2. Так как стрелка пробника при этом отклоняется, между гнездами 5 и 6 есть цепь, т. е. дефект находится в этом блоке.
Проверки позволили установить только дефектный блок, но утверждать, какой из трех составляющих его элементов неисправен, нельзя. Для отыскания дефекта необходимо разделить второй блок на отдельные элементы, т. е. разобрать штепсельные соединители Х2 и ХЗ на части и отделить их от кабеля Е2. Так как по имеющейся информации отдать предпочтение ни одному из элементов невозможно, то разделить первым можно любой из них, например соединитель Х2. Сняв корпус и осмотрев места паек, мы видим, что гнезда 5 и 6 соединяются между собой каплей припоя, что и приводит к образованию между ними цепи, которой по схеме не должно быть.
Пример 28. Проверка электрических цепей под напряжением контрольной лампой. Пусть необходимо проверить цепи в объекте контроля, на который после окончания монтажа не подавалось напряжение (рис. 25). В этом случае сначала проверяют его цепи питания на отсутствие коротких замыканий. Для этого перед подачей питания последовательно в один из полюсов включают контрольную лампу Н (поз. /).
Особое внимание следует обратить на необходимость строжайшего соблюдения правил безопасности при работе в электроустановках, находящихся под напряжением. Так как контрольная лампа Я должна быть рассчитана на номинальное напряжение сети, то этот способ можно применять только в электроустановках напряжением до 220 В (особенно он удобен для цепей постоянного тока до 27 В и периодического тока до 42 В). В установках, где возможно случайное присоединение к цепям напряжением 380 В и выше, необходимо использовать различные индикаторы напряжения или фазоуказатель-пробник ФП-1 (см. далее рис. 44, а и текст к нему). При использовании индикатора перед подачей напряжения на объект контроля любым другим способом (например, пробником в обесточенном объекте контроля) проверяют отсутствие коротких замыканий в его цепях питания.
Контрольная лампа должна быть заключена в арматуру переносного светильника (лучше всего такого, в котором предусмотрено автоматическое отключение напряжения от выводов патрона при повреждении колбы лампы), а все действия при проверке надо выполнять, используя средства индивидуальной защиты - диэлектрические перчатки и защитные очки (маску). Последнее не относится к проверке в цепях напряжением до 27 В постоянного или 42 В периодического тока.

Рис. 25. Проверка электрических цепей контрольной лампой
Если в цепях питания проверяемого объекта контроля нет коротких замыканий, то при подаче напряжения в точки 0-6 лампа Н (поз. /) будет гореть неполным накалом и, значит, можно подавать напряжение непосредственно на объект контроля (в точки О-4). Если лампа горит полным накалом, подавать напряжение нельзя и необходимо определить причину короткого замыкания.
В том случае, когда перед проверкой электрических цепей под напряжением объект контроля работал без перегрузок и коротких замыканий, подавать напряжение в цепь питания можно без включения контрольной лампы.
Положительное свойство последовательного включения лампы в цепь питания состоит в том, что проходящий по цепи питания ток ограничивается сопротивлением лампы.
Отметим, что для проверки цепей под напряжением можно использовать только лампы накаливания, так как свечение газосветных ламп при коротком замыкании и при его отсутствии визуально неразличимо.
Проверив цепь питания, переходят к проверке под напряжением других цепей схемы. При этом используют такое свойство элементов цепи, как зависимость падения напряжения на элементе от его сопротивления. На контактах, предохранителях и подобных элементах падение напряжения практически равно нулю или не менее чем на два-три порядка (как минимум в 100-1000 раз) отличается от падения напряжения на катушках реле и контакторов, резисторах, лампах и других элементах, являющихся нагрузкой цепи.
Проверим цепи данного объекта контроля. Вначале проконтролируем целость цепи точка 0 - предохранитель F1 - контакт КК1.1 - контакт КК2.1 - точка 2, подключив один щуп лампы Н к точке 4. Если затем прикоснуться другим щупом лампы к точке 1 (поз. II), то при исправном предохранителе F1 лампа будет гореть так же, как при прямом ее включении в сеть, что свидетельствует о наличии напряжения в точке 1. Подключив щуп к точке 1а, а затем к точке 2, можно проверить исправность контактов КК1.1 и КК2:1, как это делалось при проверке предохранителя F1. Исправность цепи, состоящей из последовательно соединенных элементов, можно проверить по наличию напряжения на ее конечном элементе (поз. Ill) без контроля напряжения на промежуточных.
После этого перейдем к проверке цепи: точка 4 - предохранитель F2 - контакт К:1 с параллельно подключенной к нему кнопкой S2-кнопка S1-точка 3, подключив один щуп лампы Н к другому полюсу источника - к точке 0. Если теперь прикоснуться другим щупом лампы к точке 5 (поз. V), то по наличию напряжения можно судить об исправности предохранителя F2. При нажатой кнопке S2 и целости всех элементов, входящих в проверяемую цепь, в точке 3 должно быть напряжение, которое при исправной катушке контактора К вызовет его срабатывание.
Таким образом, подключая контрольную лампу Я к разным точкам схемы, можно проверить исправность ее цепей.

При проведении электромонтажных работ может понадобиться прозвонка кабеля, например, когда производится маркировка жил и проводов, проверка изоляции и целостности проводки, а также поиск места обрыва электрокабеля. Рассмотрим, какими способами можно провести тестирование, а также необходимое для этой цели оборудование.

Методы

Способы тестирования зависят от того, с какой целью оно выполняется. Для проверки целостности кабеля на предмет обрыва или электрической связи между его жилами (короткого замыкания) прозвонку можно осуществить тестером на основе батарейки и лампочки или же воспользоваться для этой цели мультиметром. Последний предпочтительнее.

Несмотря на то, что цена мультиметра выше, чем примитивного устройства, рекомендуем купить его, в хозяйстве этот прибор всегда пригодится.

Для проверки кабеля мультиметр должен быть включен в соответствующем режиме (изображение диода или зуммера).


Методика тестирования следующая:

При проверке провода на обрыв тестер подключается к его концам так, как это показано на рисунке. Если кабель целый – лампочка будет светиться (при тестировании мультиметром раздастся характерный звуковой сигнал).


Пояснения к рисунку:

  • A –электрокабель;
  • B – жилы кабеля;
  • С – источник питания (батарейка);
  • D – лампочка.

Если кабель уже уложен, то с одной его стороны необходимо соединить жилы вместе и прозвонить провода на другом конце;


когда проверяется наличие электрической связи между жилами кабеля, щупы тестера подключают к разным проводам. В отличие от предыдущего примера, скручивать жилы с другой стороны не требуется. Если между проводами нет короткого замыкания, лампочка гореть не будет (при тестировании мультиметром не раздастся звуковой сигнал).

Прозвонка многожильных кабелей с целью их маркировки

При маркировке многожильных кабелей можно использовать описанные выше методы, но существуют способы, позволяющие существенно упростить этот процесс.

Способ 1 : применение специальных трансформаторов, у которых имеется несколько отводов вторичной обмотки. Схема подключения такого устройства показана на рисунке.


Как видно из рисунка, первичная обмотка такого трансформатора подключена к сети питания, один конец вторичной обмотки подсоединен к защитному экрану кабеля, остальные выводы – к его жилам. Для маркировки проводов необходимо замерить напряжение между экраном и каждым проводом.

Способ 2 : использование блока резисторов с разным номиналом, подключенного к проводам кабеля с одной стороны, как показано на рисунке.


Для определения кабеля достаточно замерить сопротивление между ним и экраном. Если вы хотите сделать такой прибор своими руками, то следует подбирать резисторы с шагом не менее 1 кОм, чтобы уменьшит влияние сопротивления провода. Также не следует забывать, что номинал резисторов имеет определенную погрешность, поэтому предварительно замерьте их омметром.

При проверке телефонного многожильного кабеля монтажниками не редко используется гарнитура для прозвонки, например ТМГ 1. Собственно, это две телефонные трубки, к одной из которых подключена батарейка на 4,5 В. Такое несложное приспособление позволяет не только проверить кабель, а и согласовывать свои действия при монтаже и тестировании.


Проверка изоляции

Для тестирования изоляции мегаомметром или мультиметром принцип прозвонки такой же, как при поиске электрической связи между жилами кабеля.

Алгоритм тестирования следующий:

  • устанавливаем на приборе максимальный диапазон – 2000 кОм;
  • подсоединяем щупы к проводам и смотрим, что показывает дисплей прибора. Учитывая, что провода обладают определенной емкостью, пока она не зарядится, показания могут изменяться. Через несколько секунд табло прибора может отображать следующие значения:
  • единица, это говорит о том, что изоляция между проводами в норме;
  • ноль – между жилами короткое замыкание;
  • какие-то средние показания, это может быть вызвано как «утечкой» в изоляции, так и электромагнитными помехами. Для установления причины следует переключить прибор на максимальный диапазон 200 кОм. При неисправной изоляции на табло отобразятся стабильные показания, если они будут меняться, то можно с уверенностью говорить об электромагнитных помехах.

Внимание! Перед проверкой изоляции электропроводки ее необходимо обесточить. Второй важный момент – проводя измерения, не прикасайтесь к щупам руками, этим можно внести погрешности.

Видео: Прозвонка провода – проверка целостности.

Поиск места обрыва

После того, как был обнаружен обрыв в электропроводке, необходимо локализировать место, где это произошло. Для прозвонки в этом случае можно использовать тон генератор, например такой как Cable Tracker MS6812R или TGP 42. Такие устройства позволяют с точностью до сантиметра установить место обрыва, а также определить трассу скрытой проводки, помимо этого приборы имеют и другие полезные функции.


Приборы данного типа включают в себя генератор звукового сигнала и датчик, присоединенный к наушнику или динамику. При приближении датчика к месту обрыва пар кабеля UTP или жил электропроводки тональность звукового сигнала меняется. Когда производится тоновая прозвонка, перед подключением звукового генератора необходимо обесточить проводку, в противном случае прибор выйдет из строя.

Заметим, что при помощи этого прибора можно прозванивать как силовые, так и слаботочные кабеля, например, проверить целостность витой пары, радио проводки или линий связи. К сожалению, такие устройства не позволят определить правильность подключения, для этой цели применяется специальное оборудование – кабельные тестеры.

Тестеры для кабеля

Данный класс приборов позволяет проверить как целостность кабеля, так и правильность его подключения, что очень важно для сетей интернет провайдеров. Это могут быт простые устройства, проверяющие кроссоверность или сложные приборы на PIC контролере, у которых есть АЦП и встроенный мультиплексор.


Многоцелевой кабельный тестер Pro’sKit MT-7051N на микроконтроллере

Естественно, что стоимость таких устройств не располагает к их бытовому использованию.

Самодельная бесконтактная прозвонка

Ниже показа схема простого бесконтактного детектора обрыва, она может быть собрана в течение одного вечера. Учитывая небольшое количество деталей, можно не утруждать себя изготовлением печатной платы, а применить навесной монтаж.


Перечень необходимых радиодеталей:

  • переменное сопротивление R1 – 100 кОм;
  • резистор R2 – от 4 до 8 МОм;
  • конденсаторы электролитического типа: C1 и С3 – 220 мкФ, С2 – 33 мкФ;
  • конденсатор керамического типа с емкостью 0,1 мкФ;
  • D1 – микросхема LAG 665 (желательно в корпусе DIP);
  • SP – обычный наушник от телефонной гарнитуры.

Схема может питаться от источника с напряжением от 2 до 5 вольт.

Щуп (Р) изготовлен на базе обычной спицы из колеса велосипеда.

Правильно собранная бесконтактная прозвонка кабеля не требует настройки.

Видео: Прозвонка кабеля своими руками. Как выполняется прозвонка проводов с помощью лампочки и батарейки