Подключение динамического микрофона к компьютеру.

Микрофонный вход звуковых карт предназначен для подключения электретных(разновидность конденсаторных) микрофонов . Конденсаторный микрофон имеет встроенный усилитель и поэтому на выходе достаточно сильный сигнал.

Рис.1 Схема конденсаторного микрофона.

В большинстве случаев электретные микрофоны имеют худшие характеристики чем динамические. Имеет смысл при необходимости качественной звукозаписи использовать более качественный (в сравнении с тем что устанавливается, например, в гарнитурах) динамический микрофон , который мог остаться со времен СССР, например от магнитофона, или микрофон шел от комплекта DVD с караоке. На фото нескольких примеров динамических микрофонов.

Рис.2 Динамический микрофон от DVD плеера с караоке.

Рис.3 Динамический микрофон Октава МД-47. Год выпуска 1972. Замечательный звук.

Рис.4 Динамический микрофон. Капсюль ДЭМШ-1А.

Рис.5 Стильная ретро гарнитура с динамическим микрофоном.

Подключив к микрофонному входу звуковой карты динамический микрофон , не возможно получить нормальный уровень сигнала, по крайней мере, если не кричать в этот микрофон. Необходимо усиление.

В отличие от динамических микрофонов, все конденсаторные микрофоны требуют питания усилителя. Для работы встроенного в конденсаторный микрофон усилителя на средний контакт подается питание примерно 3 вольта - Vbias(на рис.8 - +V ). Схема усилителя для динамического микрофона аналогична встроенному усилителю конденсаторного микрофона.

Рис.7 Схема усилителя для динамического микрофона.

Рис.8 Штекер микрофона.

Номиналы деталей варьируются очень широко.

Транзистор V1 n-p-n типа. Например С945, КТ315Б, КТ3102. Резистор R1 в пределах 47..100кОм, желательно поставить подстроечный, и вывести транзистор в оптимальный режим, а затем измерить сопротивление построечного резистора и поставить постоянный близкого номинала. Хотя работать схема будет сразу с любым транзистором и резистором с номиналом в этих пределах. Конденсаторы С1,С2 от 10 мкф и до 100 мкф, оптимально 47 мкф на 10 В. Резистор R2 1..4,7кОм

Схему желательно разместить в самом корпусе микрофона, как можно ближе к капсюлю, чтобы избежать усиления шумов, которые могут проникнуть в кабель. Если же микрофон должен использоваться по прежнему назначению или нужна возможность подключать разные динамические микрофоны, то схему можно смонтировать в отдельном экранированном корпусе с гнездом для подключения микрофонов и кабелем для подключения к звуковой карте.

Микрофоны служат для преобразования энергии звуковых колебаний в переменное электрическое напряжение. Согласно классификации, акустические микрофоны делятся на две большие группы:

Высокоомные (конденсаторные, электретные, пьезоэлектрические);

Низкоомные (электродинамические, электромагнитные, угольные).

Микрофоны первой группы условно можно представить в виде эквивалентных

переменных конденсаторов, а микрофоны второй группы - в виде катушек индуктивности с подвижными магнитами или в виде переменных резисторов.

Среди высокоомных более доступными являются электретные микрофоны. Их параметры нормируются в стандартном диапазоне звуковых частот, который имеет народное название «два по двадцать» (20 Гц … 20 кГц). Другие особенности: высокая чувствительность, широкая полоса пропускания, узкая диаграмма направленности, малые искажения, низкий уровень шумов.

Различают двух- и трёхвыводные электретные микрофоны (Рис. 3.37, а, б). Чтобы легче было идентифицировать выходящие из микрофона провода, их намеренно делают разноцветными, например, белый, красный, синий.

Рис, 3.37. Внутренние схемы электретных микрофонов: а) два провода связи; б) три провода связи.

Несмотря на имеющиеся внутри микрофона транзисторы, подавать сигнсш с него прямо на вход МК недальновидно. Нужен предварительный звуковой усилитель. При этом без разницы, встроен ли усилитель в канал АЦП М К или он является отдельным внешним узлом, собранным на транзисторах или микросхемах.

Электретные микрофоны похожи на пьезодатчики вибрации, но в отличие от последних имеют линейную передаточную и более широкую частотную характеристики. Это позволяет без искажений обрабатывать звуковые сигналы человеческой речи, в чём, собственно, и состоит прямое назначение микрофона.

Если рассортировать электретные микрофоны производства стран СНГ в порядке улучшения их параметров, то получится следующий ряд: МД-38, МД-59,

МК-5А, МКЭ-3, МКЭ-5Б, МКЭ-19, МК-120, КМК-51. Диапазон рабочих частот составляет от 20…50 Гц до 15…20 кГц, неравномерность амплитудно-частотной характеристики 4… 12 дБ, чувствительность на частоте 1 кГц - 0.63… 10 мВ/Па.

На Рис. 3.38, а, б показаны схемы непосредственного подключения электрет- ных микрофонов к М К. На Рис. 3.39, а…к показаны схемы с транзисторными усилителями, а на Рис. 3.40, а…п - с усилителями на микросхемах.

Рис. 3.38. Схемы непосредственного подключения электретных микрофонов к МК:

а) прямое подключение микрофона ВМ1 к М К возможно в том случае, если канал АЦП имеет внутренний усилитель сигнала с коэффициентом не менее 100. Фильтр R2, С/уменьшает низкочастотный фон от пульсаций питающего напряжения +5 В;

б) подключение стереомикрофона ВМI к двухканстьному АЦП МК, который имеет внутренний усилитель. Резисторы R3, ограничивают ток через диоды МК при сильных ударах по корпусу микрофона или по самой пьезопластине.

в) транзистор VTI должен иметь как можно более высокое усиление (коэффициент hjy^)’,

г) резистором R3 подбирают напряжение на коллекторе транзистора VT1, близкое к половине питания (для симметричного ограничения сигнала от микрофона ВМ 1)\

д) цепочка /?/, С1 снижает амплитуду сетевых пульсаций от источника питания +5 В, в связи с чем уменьшается нежелательный «рокот» с частотой 50/100 Гц. Здесь и в дальнейшем буквы «с», «б», «к» будут обозначать цвет проводов микрофона «синий», «белый», «красный»;

е) упрощённое подключение трёхвыводного микрофона BMI. Отсутствие резистора в эмиттере транзистора VTI уменьшает входное сопротивление каскада;

ж) удалённый «микрофон-двухполюсник» с фантомным питанием транзисторов VTI, VT2 через резистор R5. Резистором R1 подбирают напряжение +2.4…+2.6 В на эмиттере транзистора VT2. Аналоговый компаратор МК фиксирует моменты, когда сигнал от микрофона больше определённого порога, который задаётся резистором R7\0

з) транзистор работает в режиме отсечки, в связи с чем синусоидальные звуковые сигналы от микрофона ВМI становятся прямоугольны-ми импульсами;

и) подключение трёхвыводного микрофона ВМI по двухпроводной схеме. Микрофон ВМ1 и резистор R1 можно поменять местами. Резистором R2 подбирают напряжение на входе МК, близкое к половине питания;

к) резистором подбирают напряжение на входе МК, близкое к +1.5 В.

а) трансформаторная раз1^язка позволяет вынести элементы ВМ1, DAI, GBJ, Т1 на большое расстояние, при этом следует защитить вход МК диодами Шоттки. Ток потребления микросхемы DA / сверхнизкий, что позволяет не ставить выключатель в цепь батареи GB1\

Рис. 3.40. Схемы подключения электретных микрофонов к М К через усилители на

микросхемах {продолжение):

б) усилитель для микрофонной «светомузыки». Резистором R4 устанавливают порог срабатывания аналогового компаратора МК в пределах 0…+3 В;

в) «электронный шумомер». На положительный вывод аналогового компаратора МК поступает сглаженное напряжение, пропорциональное среднему уровню сигнала от микрофона ВМ1. На отрицательном выводе аналогового компаратора программно формируется «пила»;

г) резистором R3 регулируется симметрия сигнала, а резистором R5 - коэффициент усиления ОУ DAL Продетектированный сигнал (элементы VDI, VD2, СЗ, С4) поступает на вход МК. Измерение среднего уровня звука проводится внутренним АЦП;

д) нестандартное применение «светодиодной» микросхемы Z)/l/фирмы Panasonic. Возможные замены - LB1423N, LB1433N (фирма Sanyo), ВА6137 (фирма ROHM). Переключателем ЗЛ1 задаётся чувствительность в пяти градациях по логарифмической шкале: -10; -5; 0; +3; +6 дБ;

е) коэффициент усиления каскада на ОУ Z)/4/ зависит от отношения сопротивлений резисторов R4, R5. АЧХ в области низких частот определяется конденсатором С/;

ж) коэффициент усиления каскада на ОУ Z)/l / задаётся отношением сопротивлений резисторов R5, R6. Симметричность ограничения сигнала зависит от отношения резисторов R3, R7\

з) микрофонный усилитель с плавной регулировкой уровня звука резистором R5\

и) двухкаскадный усилитель с распределённым коэффициентом передачи: Ку= 100 {DAI.I), Ку= 5 {DAI.2). Делитель на резисторах R4, /?5 задаёт смещение, которое немного меньше, чем половина питания. Это связано с тем, что ОУ DA / не имеет характеристику «rail-to-rail»;

Рис. 3.40. Схемы подключения электретных микрофонов к МК через усилители на

микросхемах {продолжение):

к) ёмкость конденсатора С4ъ некоторых схемах увеличивают до 10…47 мкФ (улучшение параметров проверяется экспериментально);

л) «левая» половина ОУ DAI усиливает сигнал, а «правая» половина включена по схеме повторителя напряжения. Такое решение обычно применяется, когда МК находится на значительном удалении от усилителя или требуется разветвить сигнал на несколько направлений;

м) резисторы R2, R4 переводят инверторы логической микросхемы DDI в усилительный режим. Резистор R3 можно заменить конденсатором ёмкостью 0.15 мкФ;

н) специализированная микросхема DA1 (фирма Motorola) реагирует только на звуковые сигналы голоса человека;

о) штеккер, вставляемый в гнездо XS1, автоматически разрывает связь между конденсаторами С/ и С2, при этом внутренний микрофон ВМ1 отключается, а внешний звуковой сигнал подаётся на вход DAL /. Оба усилителя микросхемы Z)/l/ имеют выходные уровни «rail-to-rail»;

п) резистором устанавливается симметричность ограничения сигнала на выводе 1 микросхемы DA 1. Транзистор VTI совместно с элементами R5, СЗ выполняет функцию детектора.^

3.5.2. Микрофоны электродинамические

Основными элементами конструкции электродинамических микрофонов являются катушка индуктивности, диафрагма и магнит Диафрагма микрофона под воздействием звуковых колебаний приближает/отдаляет магнит от катушки, в связи с чем в последней возникает переменное напряжение. Всё, как в школьных опытах по физике.

Сигнал от электродинамического микрофона слишком слабый, поэтому для сопряжения с МК обычно ставят усилитель. Его входное сопротивление может быть низким. Соединительные провода от микрофона к входному усилителю надо экранировать или уменьшать по длине до 10… 15 см. Для устранения ложных срабатываний рекомендуется обернуть капсюль поролоном и не прикручивать микрофон жёстко к стенке корпуса.

Типовые параметры электродинамических микрофонов: сопротивление обмотки 680…2200 Ом, максимальное рабочее напряжение 1.5…2 В, рабочий ток 0.5 мА. Важное практическое следствие - электродинамические микрофоны

легко отличить от электретных (конденсаторных, пьезокерамических) по наличию омического сопротивления между выводами. Исключение из правила составляют промышленные микрофонные модули, содержащие внутри корпуса транзисторный или интегральный усилитель.

Заменить электродинамический микрофон можно электретным через переходник, изображённый на Рис. 3.41. Конденсатор С2 корректирует АЧХ в области верхних частот. Делитель на резисторах R1, создаёт рабочее напряжение для микрофона BML Конденсатор С1 служит фильтром по питанию.

Рис. 3.43. Схемы подключения динамических громкоговорителей к входу МК:

а) транзисторный усилитель датчика ударов с применением громкоговорителя BAI. Чувствительность регулируется резисторами RI, R2. Конденсатор С2сглаживает пики сигналов. Конденсатор С/ необходим, чтобы база транзистора VT1 не соединялась с общим проводом через низкое сопротивление громкоговорителя BAI;

б) транзистор VTI является усилителем с общей базой. Его особенность состоит в низком входном сопротивлении, которое хорощо согласуется с параметрами громкоговорителя BAI. Резистором RI задают рабочую точку транзистора VTI (напряжение на его коллекторе), чтобы получить симметричное или асимметричное ограничение сигнала. Резистором R3 регулируют порог (чувствительность, усиление);

в) функцию микрофона выполняет головной телефон BAI. Он имеет более высокое сопротивление обмотки, чем низкоомный громкоговоритель, что увеличивает чувствительность и облегчает его подключение к МК. Резистором RI регулируется амплитуда сигнала;

На Рис. 3.43, а…г показаны схемы подключения динамических громкоговорителей к входу МК в качестве микрофонов.

г) часть схемы переговорного устройства, в котором громкоговоритель BAI попеременно выполняет функцию микрофона и динамика. МК определяет состояние «Приём/Передача» по НИЗКОМУ/ВЫСОКОМУ уровню на линии входа (ВЫСОКИЙ уровень от резистора R4, а НИЗКИЙ - от и BAI). Если МК имеет АЦП с внутренним усилителем, то можно «прослушать» разговор в тракте. Кроме того, если линия МК будет переведена в режим выхода, то с её помощью можно генерировать различные звуковые сигналы в УНЧ (через R3, VD1, R2, С2).

Данная статья написана на основании опыта изготовления более чем двух сотен данных переходников. За основу была взята схема из статьи из журнала «Радиодизайн» № 18, с. 52 (рис.1).

Указанные на схеме элементы не очень критичны, дроссель RFC можно не устанавливать. Первоначально данная схема была изготовлена в небольшой аккуратной коробочке, которая постоянно за что-нибудь цеплялась и вскоре стала очень сильно раздражать. После чего возникла идея изготовления переходника, который не особо отличался от фирменного разъема. Было испытано множество различных вариантов. Вашему вниманию предоставляется окончательный вариант.

Берем стандартный 8 штырьковый разъем и разбираем его, как указано на рис.2.

Все выводы, за исключением № 7, максимально укорачиваем. Оставшийся вывод является общим микрофонным проводом для трансиверов всех моделей. Диаметр отверстия в торце разъема увеличиваем до 7,2 мм напильником (я протачиваю на токарном станке, но напильником тоже довольно быстро получается).

Далее берем разъем для 3.5 мм аудио – штекера, обрезаем его, как указано на рис.3 (длина оставшейся накручивающейся части составляет 10-11 мм). Для улучшения контакта центральные проводники сгибаются и спаиваются вместе, а корпусной вывод укорачивается. К выводам припаиваем проводники, лучше во фторопластовой изоляции.

Для изоляции надевается термоусадочная трубка и нагревается любым способом. Накручиваем обрезанный 11 мм остаток корпуса. Изготавливаем и надеваем прокладку с вырезанным отверстием в зависимости од диаметра корпуса с термоусадочной трубкой из любого изоляционного материала – фторопласт, текстолит, но самый простой вариант из полиэтиленовой бутылки.

А вот так выглядит готовая плата (рис.4). Через отверстие по центру проходят два проводника, а выемка по краю платы служит для пайки к оставшемуся выводу 7 на микрофонном штекере.

Процесс сборки происходит следующим образом:

1. Откручиваем полукольцо в торце микрофонного штекера, вставляем аудио-разьем, зажимаем скобу и по периметру обрезаем изоляционную прокладку. Таким образом изолируются две части изготавливаемого переходника и оплетка микрофонного кабеля не будет иметь контакта с корпусом трансивера;

2. Берем два фторопластовых провода длиной по 1см и припаиваем их -

ICOM - к выводам 1 и 2

KENWOOD – к выводам 1 и 5

YAESU - к выводам 2 и 8 (прежде чем изготавливать переходник к трансиверу данной модели проверьте наличие напряжения на 2 выводе).

Проводники пропускаем через отверстия в плате и припаиваем к соответствующим точкам, а сама плата в месте выемки крепится к выводу 7 (корпус микрофона);

3. К плате припаиваем проводники от адуио-разьема;

4. На плату надевается термоусадочная трубка и нагревается, для исключения случайных контактов платы со стенкой корпуса разъема;

5. Собираем разъем, завинчиваем крепежный винт.

Шаги сборки можно увидеть на рис.5.

Вот так выглядит переходник на моем ICOM 756 PRO 3 (рис.6).

Любые конструктивные пожелания и предложения встречу с благодарностью.

Мой адрес: [email protected] тел. 8-067-167-34-50 или 8-05662-2-22-23

Юрий Примак, UT7EL

Давно витала в голове. Собравшись с силами, приступил к поиску схем усилителей. Большинство схем, просмотренных мною, что не нравилось. Хотелось собрать проще, лучше и меньше (для ноутбука, ибо встроенный делали, видимо, только для галочки – качество плохое). И вот после недолгого поиска, была найдена и протестирована схема усилителя микрофонного сигнала с фантомным питанием. Фантомное питание (это когда питание и передача информации осуществляется по одному проводу) – огромный плюс этой схемы, ведь оно избавляет нас от сторонних источников питания и проблем связанных с ними. Например: если мы будем питать усилитель от простой батарейки, то она рано или поздно сядет, что приведет к неработоспобности схемы в данный момент; если будем питать от аккумулятора, то его придется рано или поздно заряжать, что тоже приведет к некоторым трудностям и ненужным движениям; если будем питать от БП, то здесь есть два минуса, которые, по моему мнению, отбрасывают вариант его использования – это провода (для питания нашего УМ) и помехи. От помех можно избавится многими способами (поставить стабилизатор, всяческие фильтры и т.д.), то от проводов избавиться не так уж и просто (можно, правда, сделать передачу энергии на расстоянии, но зачем городить целый комплекс устройств, для питания какого-то микрофонного усилителя?) к тому же это снижает практичность устройства. Перейдем к схеме:

Вариант схемы усилителя для динамического микрофона

Схема отличается своей супер-простотой и мега-повторяемостью, в схеме два резистора (R1, 2), два конденсатора (C2, 3), штекер 3,5 (J1), один электретный микрофон и транзистор. Конденсатор С3 работает в качестве фильтра микрофона. Емкостью С2 на пренебрегать, то есть не надо ставить ни больше, ни меньше от номинала, указанного в схеме, иначе это повлечет за собой кучу помех. Транзистор Т1 ставим отечественный кт3102 . Для уменьшения размеров устройства, использовал SMD транзистор с маркировкой «1Ks». Если ты вообще незнаешь как паять – вперед на форум.


При замене Т1 особых изменений в качестве не последовало. Все остальные детали тоже в SMD корпусах, в том числе и конденсатор С3. Вся плата получилась довольно-таки маленькая, правда можно сделать ее еще меньше, используя технологию изготовления печатных плат ЛУТ. Но обошелся и простым полумиллиметровым перманентным маркером. Вытравил плату в хлорном железе за 5 минут. Получилась вот такая плата усилителя микрофона, которая крепится к штекеру 3,5.


Все это неплохо помещается внутрь кожуха от штекера. Если тоже будете так делать, то советую делать плату как можно меньше, так как у меня она деформировала кожух и поменяла его форму. Плату желательно промыть растворителем или ацетоном. В итоге получилось такое полезное устройство, с хорошей чувствительностью:


Прежде чем подключать микрофон к компьютеру, проверь все контакты и есть ли на входе микрофона питание +5v (а оно должно быть), во избежание комментариев типа: «Я собрал точно как в схеме а оно не работает!». Это можно сделать так: подключаешь новый штекер к разъему микрофона и меряешь напряжение вольтметром между массой (большим отводом) и двумя короткими отводами для пайки. Постарайся на всякий случай не закоротить между собой выводы штекера, когда будешь измерять напряжение. Что тогда будет, не знаю и проверять не хочу. У меня микрофонный усилитель работает уже 3 месяца, качеством и чувствительностью полностью доволен. Собирайте и отписывайтесь на форуме о своих результатах, вопросах, и, может быть даже о доработках корпуса, схемы и методах их изготовления. С вами был BFG5000 , удачи!

Обсудить статью УСИЛИТЕЛЬ ЭЛЕКТРЕТНОГО МИКРОФОНА

Так уж сложилось, компания KENWOOD (в отличие от ICOM), соблюдая давнюю традицию, комплектует свои коротковолновые трансиверы динамическими микрофонами. Вследствие чего и микрофонный вход, прежде всего, рассчитан на их подключение. Переход на электретный микрофон требует проведения небольшой модернизации, и для этого понадобится источник постоянного напряжения, а сама доработка повлечет за собой добавление нескольких элементов. Хорошо еще, что KENWOOD предусмотрел наличие низковольтного источника постоянного напряжения, т.н. фантомное питание, и вывел его на 5-й контакт микрофонного разъема (круглого, 8-ми контактного).

Кто-то скажет — «тоже мне проблема…». Однако, довольно часто натыкаюсь на эфирные разговоры по этой тематике, и вопрос — «А как подключить?» до сих пор актуален. Кто-то где-то что- то читал, с кем-то говорил, что-то кому-то рассказывал, и разговоры про «ЭТО» ведутся постоянно.

Мне же хочется акцентироваться на следующем. Подключить- то, как вы понимаете, совсем не сложно, существуют несколько вариантов. Воспользуемся самой простой и типовой схемой подключения. Она достаточно хорошо известна, и содержит всего несколько деталей. И тем не менее…

Многие из тех с кем довелось разговаривать, сетовали — мол, источник +8В, который «сидит» на 5-ом контакте микрофонного разъема в трансиверах KENWOOD давно выгорел, и они не могут воспользоваться таким способом.

Действительно, этот источник очень слабенький, в пользовательской инструкции про него написано, что его нагрузочная способность не более ЮмА. Ко всему прочему он без защиты — малейшее замыкание и … спасибо за компанию. Сам долгое время избегал включения электретного микрофона таким способом. До сих пор, чаще всего, пользуюсь внешним питанием, причем … батарейным. Но это не значит, что следует отказываться от подобного способа подключения.

Как-то понадобилось подключить тайваньскую телефонную гарнитуру к TS-570. Не долго думая, на махонькой платочке спаял схемку на SMD элементах, - заняла она очень мало места. А чтобы исключить короткого замыкания шины +8В, включил последовательно крохотный светодиодик, из тех, что ярко светятся при слабом прямом токе, что-нибудь около 1мА. Попробуйте замкнуть микрофонный вход пинцетом, и он сразу же засветится.

Разнообразие электретных микрофонов огромно, но недорогие модели мультимедийных гарнитур содержат, как правило, низковольтные микрофоны с питанием 1,5..,5В. Профессиональные запитываются от источника фантомного питания напряжении +48В.

В данном случае выбор ограничительного резистора большого принципиального значения не имеет. Я пользуюсь таким правилом: выбираю резистор, отталкиваясь от питающего напряжения. На каждый вольт питания от 7500м до 1кОм. При напряжении питания 8В суммарный резистор будет в пределах 6,2…7,5кОм (с учетом падения напряжения на светодиоде).

Выходное напряжение (пиковое) некоторых электретных микрофонов даже на относительно низкоомной нагрузке может достигать нескольких вольт, особенно, при близком расположении к говорящему. Поставив маленький переменный резистор, можно подобрать необходимый уровень. А, если он совмещен с выкючателем, еще лучше. Включить его желательно именно так, как указано на схеме, после конденсатора постоянной емкости, а не до него. Смысл в том, что к микрофонному входу трансивера подключается катушка динамического микрофона, замыкая постоянную составляющую на экран (AGND).
В своем большинстве микрофонный разъем дешевых телефонных гарнитур (мультимедийных) разных производителей — миниджек (3,5″). И существует вполне определенный способ их распайки. В свою очередь распайка ответного разъема может делаться «под себя». Я именно на это и напоролся при первом же включении своей гарнитуры. Распаяв, ответный разъем под самодельный микрофон, все, как и полагается, работало. Собственно, даже и не предполагал, что когда-нибудь увижу свечение ограничительного светодиода. Ан, нет, воткнул гарнитуру- загорелся светодиод. Я, мягко говоря, аж «прибалдел».
Оказалось, что заводская распайка данной гарнитуры сделана таким образом, на который я и не рассчитывал. Светящийся светодиод подсказал мне, что микрофонный вход сел «на землю» и рассчитывать на сигнал нечего — предстоит разбираться в чем дело!. Оказалось, что средний контакт разъема этой гарнитуры замкнулся с экраном соединительного провода, а у меня в ответном разъеме он был запараллелен с центральным контактом (по всей видимости, заводской брак). Пришлось привести в соответствие - все восстановилось и заработало. Казалось бы, ничего особенного, а повозиться пришлось.
И еще. Вы подключили неизвестный микрофон. Распайка разъема правильная, а светодиод горит. Значит этот микрофон или неисправный (КЗ), или динамический, катушка которого и замкнула цепь фантомного питания на «землю» (по постоянному току она имеет незначительное сопротивление).

Конденсатор 1000пФ нужно припаять непосредственно на контакты микрофонного разъема. Постарайтесь собрать схему наиболее компактно без длинных соединительных проводов.